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Abstract

Traditional power grids consisted of large grid operator owned generators to supply

the demand of the consumers. The inertia of the large generators was able to handle any

sudden demand fluctuations followed by an eventual ramp up/down of generation. How-

ever, modern smart grids, characterized by the proliferation of small sized Distributed

Energy Resources (DER) such as photovoltaics, energy storage etc. lack this ability of

handling demand fluctuations due to their lack of inertia. Therefore, they require proac-

tive supply demand matching by utilizing the available advanced sensing and remote

control capability.

A plethora of work has been done assuming that the nodes (supply and demand) in

the grid exhibit continuous operational values (generation/consumption values). Fine

grained control is required for continuous operational values which might not be eco-

nomically available. Thus, supply demand matching often needs to be performed over

discrete sets of operational values of the nodes making this an NP-hard problem. While

heuristics (with unbounded error) and Integer Program based algorithms (computation-

ally expensive) have been studied extensively, the application of approximation algo-

rithms to develop fast algorithms with bounded error guarantees has been limited.

In this work, we address these limitations by developing a suite of polynomial run-

time complexity approximation algorithms to perform supply demand matching in smart

grids. We first model the smart grid to capture the available discrete control strategies

xiii



for each node in the smart grid and the associated costs and uncertainties. We also

model practical grid constraints such as the overhead associated with switching strate-

gies and the smart grid network capacity constraints. We then develop approximation

algorithms with a variety of objectives and constraints such as minimizing curtailment

error in Demand Response, minimizing cost of supply demand matching, fairness etc.

and theoretically provide the optimality guarantees. In addition to the theoretical analy-

sis, we perform practical evaluations of the algorithms and show that our supply demand

matching algorithms provide solutions which are close to optimal in a small amount of

time.
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Chapter 1

Introduction

1.1 Motivation

Electrical power grids have undergone a drastic transformation since the 1970s in terms

of both scale and complexity [69]. Technological advances such as the use of bi-

directional AMI meters, allowing real time remote monitoring and control, have trans-

formed them into smart grids [48].

Continuous matching of supply and demand is the most critical grid operation. The

electricity demand of the consumers fluctuates throughout the day. If the fluctuating

demand is not matched using an equal amount of supply, it can lead to an increase (if

supply is more than demand) or decrease (if demand is more than supply) in the grid

frequency. If the variation in the frequency is not contained quickly, the stability of the

grid is severely compromised with potential over-voltages or blackouts.

Traditional power grids are characterized by the presence of a centralized grid oper-

ator owning large generation units such as steam or water powered turbines to meet the

demand. Any fluctuation in frequency due to demand variability is offset by the inertia

of the turbines, with a loss in its kinetic energy. The grid operator can then increase or

decrease the rotational speed of the turbines to match the demand. The larger the size of

the generation units, the larger is the inertia. Larger inertia provides the ability to offset

fluctuations for longer times. This allows the grid operators ample amount of time to

ramp up/down the generation.
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Technological advances in modern smart grids have enabled rapid proliferation of

small sized consumer owned Distributed Energy Resources (DER) into the grid such as

Photovoltaics (PV), Energy storage, fuel cells etc. For example, the adoption of dis-

tributed solar energy has increased dramatically due to the falling cost of solar PVs.

The installed prices of U.S. residential and commercial PV systems declined 5-7% on

average during 1998-2011 [6]. As per the DoE SunShot vision document, solar gener-

ated power is expected to grow to 14% of the total power supply in 2030 and 27% by

2050 [67]. As a result, the energy generation in the smart grids has decentralized.

The increase in DERs has significantly complicated the operation of supply demand

matching due to the following reasons:

• Generation patterns of renewable energy based DERs are highly influenced by the

weather conditions. Hence, in addition to the variability in demand, variability in

supply needs to be considered.

• Grids where a major portion of the demand is met using small sized DERs, have

low inertia to handle fluctuations. Thus, less time is available to ramp up/down

the supply.

• The distributed nature of DERs increases the complexity of control as the grid

operator needs to consider constraints such as cost optimality, fairness, network

constraints etc. for DER scheduling.

• In addition to supply, the proliferation of controllable loads has enabled consumer

participation using techniques such as Demand Response (DR), thereby provid-

ing a great opportunity as well as challenge for the operation of supply demand

matching.

Hence, sophisticated algorithms which pro-actively perform supply demand match-

ing in each interval - where an interval is a grid operator determined period of time -

2



by controlling both the demand and supply are required to address the challenges listed

above.

1.2 Current Technology

A plethora of theoretically sound polynomial runtime complexity optimization algo-

rithms have been developed by the smart grid community to perform supply demand

matching in a cost effective manner [71]. However, these algorithms assume that the

supply and demand nodes exhibit continuous operational values i.e. the generation value

from a supply node or a consumption value from a demand node can take any value

between its minimum and maximum. Using this assumption, the problem is formulated

as linear or convex optimization problem [20] which admit fast polynomial runtime

algorithms which provide optimal solutions using methods such as interior point [20].

However, the limitations of these works is that the assumption of continuous operational

values requires fine grained control over the nodes which is not economical and might

not even be feasible in certain scenarios.

1.3 Motivation for Discrete Operational States

To motivate the need for modeling and optimizing on discrete operational states, we

consider a toy example. Consider a warehouse which consists only of 100 dimmable

LED bulbs each consuming a maximum power of 1 W. We assume that using a single

O(1) time complexity operation, the consumption value of an LED can be set to any

value between 0 and 1 W. The minimum consumption of the warehouse is 0 W, when all

LEDs are set to 0 and the maximum is 100 W, when all LEDs are consuming maximum

power (Figure 1.1). Hence, to obtain consumption values which are continuous in the
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Figure 1.1: Continuous Operational Values: Node can take any operational value
between 0 and 100. Discrete Operational Values: Node can only take the values 0,
20, 40, 60, 80 and 100.

range 0 to 100 for the warehouse, we need 100 different switches to control LEDs.

Assuming identical LEDs, this requires 100 control signals.

Now consider the alternate scenario where a set of 20 LEDs are connected to a single

switch. Consumption values of 0, 20, 40, 60, 80 and 100 can be obtained under such

scenario using only 5 switches. Even if we assume each set to be unique, the number of

control signals required are 25 = 32 which is much less than 100.

In a real world grid, cost of installation is a major factor for a supply or demand node.

Hence, even though it might be technically feasible to obtain continuous operational

values, it might not be economically viable. Therefore, algorithms for supply demand

matching need to operate efficiently over operational values for each node which form

a set of discrete values.
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1.4 Challenges in Optimizing over Discrete Operational

States

The discrete nature of the operational values transforms the problem of supply demand

matching into a NP hard problem (see Section 3.6 for a formal proof). Thus, no optimal

polynomial runtime complexity algorithm can exist unless P = NP. In the worst case, a

brute force search enumerating all possible solutions, which is exponential in the input

size might be required. See Figure 1.2. This approach is followed by current techniques

which use Integer Program based formulations. Thus, they provide computationally

expensive optimal solutions. This is clearly not possible for grid operations where strict

timing constraints need to be adhered.

To address the computational complexity, several works have focused on developing

fast heuristics. Such heuristics do not provide any guarantee on optimality or on the

worst case performance. They can incur unbounded errors in the objective value of the

solutions they produce. Power grid operations require high reliability and hence such

heuristics cannot be relied upon due to their uncertainty.

Figure 1.2: Supply demand matching in the above figure requires enumerating 35 = 243
combinations in the worst case
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1.5 Application of Approximation Algorithms

One of the most significant contribution of this work is to model the various supply

demand matching problems as variants of packing problems. Several packing problems

such as 0-1 knapsack, subset sum problem etc. admit dynamic programming based Fully

Polynomial Time Approximation Schemes (FPTAS) or Polynomial Time Approxima-

tion Algorithms (PTAS) [72]. Given an accuracy parameter ε, an FPTAS is an algorithm

with a polynomial runtime complexity in the input size and 1
ε

which outputs a solution

with an objective value which is within (1 ± ε) of the optimal value. PTAS provides

similar guarantees, however, its runtime complexity is allowed to be exponential in 1
ε
.

Modeling the supply demand matching problems as variants of packing problems allows

us to use the approximation techniques used for the latter problem.

Consider the following simple problem: We are given a set of supply nodes with

node i exhibiting exactly two operational values, 0 and si with associated costs 0 and csi .

Similarly, we are given demand nodes with operational values, 0 and di with associated

costs 0 and cdi . Now if we assume constant demand and control the supply to meet

the demand and ignore the costs, it can be modeled as the subset sum problem. If we

consider the costs, the problem can be modeled as the knapsack problem. If we consider

costs and control both supply and demand, the problem becomes more complicated, but

still admits a dynamic programming based FPTAS.

The problems that we consider in this work are higher in complexity as they opti-

mize over several time periods, with each node equipped with more than two operational

values and they incorporate several constraints and objective values. However, by care-

fully analyzing the structure of the problem, we are able to leverage several techniques

such as rounding, LP relaxation etc. to develop approximation algorithms and provide

guarantees both in terms of the achieved objective values and the constraint violations.
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1.6 Thesis Statement

Rapid proliferation of Distributed Energy Resources (DER) in modern power

grids, also known as “smart grids”, enabled by advancement in sensing and mon-

itoring technology has introduced unique challenges as well as opportunities for

optimal grid operations. Proactive supply demand matching by controlling the

DERs and loads is imperative to ensure reliable grid operations. Moreover, as

fine grained control is not available economically, supply demand matching algo-

rithms need to optimize on discrete sets of operational values. Our research focuses

on modeling the modern smart grids consisting of controllable loads, DERs and

infrastructure nodes with associated capacity to enable development of discrete

supply demand matching algorithms. Our goal is to develop polynomial runtime

complexity algorithms for supply demand matching with bounds on the worst case

performance both in terms of the achieved objective values and the constraint vio-

lations. Our algorithms will enable the development of a smart grid control frame-

work which will facilitate DER proliferation and reduce the cost of grid operations

while ensuring reliability.

1.7 Research Contributions

In this work, we develop fast polynomial runtime complexity approximation algorithms

for a variety of objective functions and constraints. We provide sound theoretical anal-

ysis of optimality guarantees supplemented with practical evaluations to show that our

algorithms provide solutions which are close to optimal in a small amount of time.

Specifically, our contributions are as follows:

1. We develop a smart grid model to be utilized by the supply demand matching

algorithms to optimize over discrete set of operational values. Additionally, we
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model the network of the smart grid and capture the capacity constraints of the

infrastructure such as transformers and feeders.

2. We develop a suite of supply demand matching approximation algorithms for

Demand Response. This is the scenario in which the supply is constant and the

demand needs to be controlled (curtailed) such that its value is less than the avail-

able supply. We develop algorithms with several objectives such as coarse grained

curtailment across the entire horizon of the Demand Response event (Traditional

Demand Response) or equitable distribution across all the intervals in the event

(Sustainable Demand Response). We also consider several practical constraints

such as the overheads incurred by each node in switching strategies and fairness

of curtailment across all the nodes.

3. We develop a suite of supply demand matching approximation algorithms under

the scenario when both supply and demand are controllable with the objective

of minimizing the cost. We again consider several practical constraints such as

fairness and network capacity constraints.

4. We model storage to incorporate into the algorithms developed without signifi-

cantly affecting the computational complexity.

5. We develop algorithms to perform supply demand matching under prediction

uncertainties.

1.8 Dissertation Outline

The rest of the dissertation is organized as follows: We discuss the current works that

focus on supply demand matching in Chapter 2. We then discuss our smart grid model

for discrete supply demand matching optimizations in Chapter 3. This is followed by a
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discussion of a suite of algorithms developed for performing Demand Response, where

supply is constant and load is controllable in Chapter 4 and then the algorithms devel-

oped to perform cost optimal supply demand matching with both controllable loads and

supply are discussed in Chapter 5. Discrete supply demand matching under prediction

uncertainty is discussed in Chapter 6. Finally, we conclude the dissertation with a dis-

cussion of future works in Chapter 7.
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Chapter 2

Related Work

As discussed in the previous chapter, several works have focused on developing theo-

retically sound algorithms to ensure reliability in smart grids by matching supply and

demand. However, the focus of such works has mostly been on the nodes with contin-

uous operational values. We refer the readers to the survey paper [71] which performs

an exhaustive study of the DR techniques developed in the literature. As our focus in

this work is on optimizing over discrete sets, we limit our literature survey to similar

works. The works targeting discrete operational states either develop computationally

expensive Integer program based solutions or develop fast heuristics with no error guar-

antees. In this chapter, we perform a literature review of such works targeting discrete

operational states. We also discuss some works which applied approximation algorithm

techniques to solve some specific problems related to supply demand matching in smart

grids.

2.1 Earlier Works on Demand Response

Significant literature exists addressing the challenges, solutions, implementations and

estimation methodology for calculating the energy savings for Demand Response

(DR) [11, 51]. Early works focused on DR scheduling for individual residential

cases [45] or household appliances [34]. These approaches are not scalable to smart

grids.
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Traditionally, DR algorithms have focused on targeting customers based on aggre-

gate consumption data, relying on customer selection using billing data or sur-

veys [43, 49], employing dynamic programming techniques for load management and

minimizing peak load over a period [26], particle swarm optimization based tech-

niques [61] and game theoretical solutions constrained by real time pricing [23] and

customer comfort levels [17]. However, with data available from smart meters, work

such as [64] show that such approaches are very inaccurate. The actual consumption

data over a period differs significantly from the data obtained from surveys or billing

cycles. Moreover, the selection is done oblivious to the distribution of load through-

out the day. Therefore such approaches contribute little to reducing the peak energy

consumption and distributing it over other periods.

2.2 Tractable Demand Response Solutions for Discrete

Curtailment

In order to tractably solve the problem of achieving load curtailment using discrete cur-

tailment values, stochastic optimization algorithms have been developed in works such

as [38] and [24]. However, such works assume the availability of a large number of

nodes in the grid. For example, the authors in [38] propose a stochastic knapsack based

algorithm for selecting customers to maximize the probability the desired curtailment

value is achieved over the period of the entire DR event while limiting the utility’s cost.

The algorithm relies on the central limit theorem to assume the joint customer response

is normally distributed and thus is conditioned on the assumption that there are a large

number of customers from whom a subset can be selected. For example, in order to

achieve high reliability (> 95%) for large curtailment targets, the algorithm requires

around N = 2000 customers which increases the computation cost. Two heuristics are
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proposed but the approximation bounds are dependent on the ratio of customer demand

response variances which could be arbitrarily large. Although fine grained data is avail-

able, the selection algorithm focuses on aggregating the curtailment over a time interval.

However, as mentioned before, such an approach can aggressively curtail load in some

intervals and concentrate peak in other intervals. Moreover, by maximizing the proba-

bility of exceeding the desired curtailment, there might be cases where they overcom-

pensate leading to reduced benefits to the utility.

Techniques such as [57], [41], [76] and [58] develop fast algorithms which can have

arbitrarily large errors in the objective function (utility maximization, cost minimization

etc.). Authors in [57] develop a genetic algorithm based heuristic while [76] presents

a heuristic based on change making. The algorithm developed in [58] uses Linear Pro-

gramming whose solutions need to be rounded to integral values and can have large

errors (unbounded integrality gap). The notion of achieving sustainable DR over a peak

period divided into subintervals was proposed in [76] using a change making heuris-

tic to evenly distribute curtailment over intervals. However, a detailed analysis shows

that it achieves consistency between intervals without reference to the target leading to

unbounded errors which is also demonstrated by our experimental results. An automated

framework employing this heuristic is developed in [77].

2.3 Optimal Demand Response using Integer Program-

ming

The other approach is to provide computationally expensive exact solutions, for exam-

ple, [28], [46], [18], [75], [25] and [16], where the authors use Integer/Mixed Integer

Linear/Non-Linear Programming for their algorithm. The authors in [65] develop a

quadratic programming formulation for Demand Response which is then reduced into
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a distributed algorithm. The paper assumes the availability of continuous curtailment

values. However, the practical DR implementation in USC’s smartgrid allows only dis-

crete curtailment values which forms the basis of modeling them as such in our work.

This constraint makes the problem more complicated as the linear/quadratic program

gets converted into an integer linear/quadratic program.

2.4 Solar Curtailment

Load Curtailment techniques are ineffective when supply due to solar PVs exceeds the

demand. If this is left unmitigated, it causes over-voltages in the system leading to fail-

ures. Several works perform reactive solar curtailment in response to rising voltage.

VVO [52] increases reactive power to lower the voltage due to real power while iPlug

curtails the solar energy input to the grid by redirecting it to charge storage or coordinate

with local demand ramp-up resources [56]. The authors in [40, 70, 63] achieve contin-

uous curtailment from solar PVs by running them at voltages other than the Maximum

Power Point (MPP). This requires fine grained control of the solar panels. For some

scenarios, fine grained control might not be available due to limitations of inverter tech-

nology. Our work addresses such scenarios through a curtailment model that handles

a discrete set of curtailment values and provides bounded polynomial time approxima-

tions for achieving discrete curtailment targets. As mentioned in [33], discrete solar

curtailment can be performed by simply disconnecting individual PV modules using

the micro-inverters installed at PV installations. As opposed to the technique devel-

oped in [33], which is reactive to over-voltages, we perform proactive solar curtailment.

Works such as [47] develop a scheduling algorithm which determines the schedule of

generation from various sources for the entire day. The sources include a mix of renew-

able and non-renewable sources and the objective is to minimize cost. The resulting
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optimization problem is complex as it has to make a decision for each node for each

interval of the entire day. This makes it difficult to scale this algorithm for large distri-

bution grid or micro-grids with rooftop PVs installed.

2.5 Applications of Approximation Algorithms for Sup-

ply Demand Matching

As discussed before, the application of approximation algorithms for the problem of

supply demand matching is limited. Constant factor approximation algorithms based

on strip packing have been developed for peak demand reduction [68, 10, 73, 54]. The

problem of strip packing is defined as follows: Given a set of axis aligned rectangles,

pack them into fixed width strip while minimizing its height. In smart grid context,

the rectangles denote the total energy consumed by each individual appliance with the

height of the strip denoting the maximum power (energy) required at any given time.

Essentially, these algorithms distribute a fixed amount of energy temporally to minimize

the peak consumption. Peak reduction is one special case of the more generalized supply

demand matching problem.
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Chapter 3

Smart Grid Modeling for Discrete

Supply Demand Matching

Optimizations

In this work, we focus on a specific type of smart grid known as discrete microgrids.

Discrete microgrids are characterized by the presence of a centralized controller which

is responsible for the grid operations. The various supply and demand nodes in such

smart grids exhibit discrete operational values i.e. at any given time step, the feasi-

ble region of the operational value the node can exhibit forms a discrete set. More-

over, due the presence of decentralized generation using small sized Distributed Energy

Resources (DER), such grids have very low supply inertia, thereby making proactive

supply demand matching imperative.

In this chapter, we discuss the smart grid model that we developed to model discrete

microgrids. The smart grid model captures important grid characteristics such as the

number of supply and demand nodes, the available controllable strategy space and their

associated costs, the costs associated with switching strategies, the smart grid network

and the capacity constraints of the various infrastructure nodes such as transformers,

feeders etc. This model is then utilized by the algorithms developed in the subsequent

chapters for supply demand matching.
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3.1 Supply Demand Matching via Controllable Curtail-

ment Strategies

3.1.1 Smart Grid

The Smart Grid that we consider in this work consists of several demand nodes: con-

sumers of electricity, and supply nodes: electricity producers. The supply nodes that we

consider in this work are the customers who have solar PVs installed. A single consumer

can act both as a demand node and a supply node. In this case, we model two different

nodes for the consumer: one for demand and one for supply. We assume that the smart

grid has a high PV penetration i.e. the supply from solar PVs under normal weather

conditions meet the demand of the consumers for most of the day. We assume that dur-

ing night or during extremely unfavorable weather conditions, conventional sources of

electricity are used to meet the demand.

3.1.2 Smart Grid Node

As discussed in the previous section, a smart grid node can be a demand node or a

supply node. We assume that for each node at any given interval, the operational value

when the node is not being controlled is the maximum output for that interval. Any

control action is taken in terms of curtailment i.e. a reduction in the operational value.

In Sections 3.1.4 and 3.1.5, we discuss how to obtain these output values. We use the

term curtailment strategy to denote a curtailment control action.

Consider the node shown in Figure 3.1. At a given time t, if no control action

is taken, or in other words, default strategy of 0 is followed, the operational value of

the node is O(t) with an associated curtailment value of 0. Following strategies 1, 2

or 3 results in an operational value of α1O(t), α2O(t) and α3O(t) respectively, where
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0 ≤ α3 ≤ α2 ≤ α1 ≤ 1. The corresponding curtailment values are (1 − α1)O(t),

(1−α2)O(t) and (1−α3)O(t) respectively. The shaded portion below show the uncon-

trollable operational state. For example, for a demand node, this could denotes the

baseline demand which is imperative to be met. For some nodes, it is possible that the

uncontrollable operational state area is empty. For example, for solar PVs it is possible

to curtail the entire generation by disconnecting the PV from the grid.

Figure 3.1: Smart Grid node with 3 + 1 (default) available curtailment strategies.

3.1.3 Smart Grid Controller

We assume there exists a centralized grid operator/controller with the capability of

remotely switching a node into a curtailment strategy. One simple way in which this

capability can be achieved is as follows: Each node can be equipped with a controller

with the capability to receive and respond to some IP based smart grid specific com-

munication protocol such as Active Network Management (ANM). The centralized grid

operator/controller can then send signals for switching curtailment strategies using the

same protocol.
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Figure 3.2: Smart Grid nodes with centralized controller communicating via protocol
such as ANM

3.1.4 Demand Curtailment Strategies

The demand curtailment model considered in this work is based on a real world Demand

Response implementation in USC’s Campus Microgrid [36]. In the Smart Grid, each

demand node is associated with several demand curtailment strategies. Examples of

strategies include Global Zone Temperature Reset (GTR), Variable Frequency Drive

Speed Reset (VFD), Equipment Duty Cycling (Duty) and their combinations [36]. Each

curtailment strategy for each node in a given time interval exhibits a discrete curtailment

value i.e. the reduction in the consumption from the maximum output due to the adop-

tion of this curtailment strategy. This complicates the problem as Linear Programming

based techniques, which are both fast and optimal can no longer be used. This value

can be predicted using algorithms mentioned in [12]. Each node is also associated with

a default curtailment strategy of curtailment value 0. Hence, if a node has no curtail-

ment strategy available or does not participate in demand curtailment, we assume that it
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follows the default strategy. Demand curtailment is known in the literature as Demand

Response [11].

3.1.5 Solar Curtailment Strategies

Each supply node i.e., a node with PV installation in the Smart Grid consists of several

solar panels (each solar panel is called a module). Traditionally, modules are connected

in series to an inverter which in turn is connected to the grid. However, this topology

affects the efficiency of the PV system as the inverter conditions the output according to

the poorest performing module [33]. Therefore newer designs, in which each module is

independently connected to a micro-inverter are becoming increasingly popular [27].

Technically, each micro-inverter of a PV installation is an independent grid con-

nected generator, turning the PV installation into a segmented generator with discrete

generation output. The maximum output of the PV installation will occur when all

the solar panels are allowed to feed into the grid. However, at any given time, micro-

inverters can be configured such that only a subset of PV modules are connected to the

grid. Our objective is to exploit this capability by controlling the micro-inverter con-

figuration and enabling discrete curtailment of supply. We refer the reader to [33] for

more details on utilizing micro-inverters for solar curtailment. Note that the technique

developed in [33] is a reactive technique which reacts to voltage increase and requires

high frequency voltage sampling. Our technique is a proactive technique which avoids

an increase in voltage by reducing supply in advance.

As discussed in [33], the curtailment can be achieved using module tripping by exe-

cuting it as an inverter restart. Module tripping is a form of generator tripping where the

loss of capacity is less than 100%. Generator tripping is recognized as the most effective

way of resolving transient stability issues [33]. Thus, in this work we do not explicitly

consider any stability issues related to solar curtailment.
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3.1.6 Curtailment Cost

Each curtailment strategy for each node is associated with a cost value as curtailment

leads to a loss in utility. These costs are determined by the grid operator to reflect the

loss. Typically, the costs are some function of the curtailment value e.g., if a node,

by following a strategy curtails γ, then the cost of this strategy will be f(γ), where f

is some function determined by the grid operator. Linear and quadratic functions are

commonly used cost functions in grid operations. The objective of our framework is to

minimize cost while performing supply demand matching.

3.1.7 Fairness in Curtailment

Curtailment performed by any nodes leads to a loss in utility. Hence, we should ensure

that no single node should be disproportionately penalized while achieving a certain

global curtailment target for supply demand matching. To ensure that certain nodes

of the grid are not unfairly penalized, we assign a budget value Bb with each node b.

We also assign a lower bound of αbBb on the curtailment value. A fairness constraint

is added into the algorithms which ensures that no node curtails more than its budget

value.

3.1.8 Incorporating Strategy Switching Overheads

In order to incorporate strategy switching overheads, for a node b, we define a function

χb to model the cost of switching between allowable strategies. The purpose of the cost

is to disallow frequent strategy switching when ramp time is high. If the node is allowed

to switch from strategy j to k, then χb(j, k) < ∞ denotes the cost of switching, else

χb(j, k) =∞. Note that χb can be represented using a 2D square matrix whose i, j entry

represents the cost of switching from strategy i to j. This ensures that a single call of
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χb requires O(1) amount of time. For a node b, we limit the cost incurred in switching

strategies by τb.

For example, consider the state transition diagram shown in Figure 3.3. The follow-

ing matrix represents the strategy switching overheads:

0 1 2 3

1 0 1 ∞

2 ∞ 0 1

3 ∞ ∞ 0

(3.1)

Figure 3.3: Strategy transition diagram for a node with 3 + 1 (default) strategy. A bi-
directional arrow signifies that transition can occur in both directions.

3.2 Supply Demand Matching Framework

Mitigating supply-demand mismatch within tight timing constraints is critical for

smooth operation of a smart grid. As shown in Figure 3.4, during several intervals

of the day, such as regions 1 and 3, the demand of the consumers can exceed the solar

supply. This can cause blackouts in the grid. Demand curtailment strategies need to

be adopted during such intervals to avoid blackouts. The other extreme is shown using

region 2 in Figure 3.4. These are the intervals in which the supply due to solar PVs

exceeds the demand. This can cause over-voltages in the grid leading to the tripping
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of fault prevention devices [33]. Under this scenario, supply curtailment strategies are

required.

Region 1:
Demand > 
Supply

Region 3: 
Demand > 
Supply

Region 2: 
Supply > 
Demand
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Figure 3.4: Example Supply Demand Curve

We develop a generalized framework which performs supply demand matching by

selecting load or supply curtailment strategies. We define supply demand matching

horizon as the time horizon during which the framework is used. Now, each supply

node of the smart grid can be associated with a generation prediction model such as

ARIMA+ANN ensemble [53] to output the generation value. Supply curtailment values

corresponding to the strategies can be obtained as discussed in Section 3.1.5. Simi-

larly, each demand node can be associated with a demand prediction model such as

ARIMA [14] to output the demand value under default strategy. Each node can also be

associated with a curtailment prediction model [12] which determines the curtailment

obtained by following curtailment strategies. Determining the best prediction model for

each node is a separate research topic and is out of the scope of this work.
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Figure 3.5: High Level Overview of Single Control Mode

Our supply demand framework runs in two different modes differentiated by the

nodes that are being controlled in any given time interval of the supply demand matching

horizon. The two modes are as follows:

1. Single Control Mode: In this mode, at any given time interval, either demand

nodes are controlled or the supply nodes, but not both. A high level overview of

single control mode is shown in Figure 3.5. The framework determines the aggre-

gate load and supply for each interval in the supply demand matching horizon.

It then identifies a list of load curtailment horizons and supply curtailment hori-

zons and the respective curtailment targets. A curtailment horizon is defined as a

period of time during which either demand is higher than the supply requiring a

demand curtailment or vice-versa. For each interval of every curtailment horizon,

the supply demand matching framework uses the curtailment prediction models

to determine discrete curtailment values for each node. It also determines the cost
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values associated with them. Then, for each curtailment horizon, it runs one of

the supply demand matching algorithms developed in this work. The algorithm to

run is pre-determined by the grid operator. The algorithm returns the curtailment

strategies to be followed by each node in each time interval of each curtailment

horizon.

2. Dual Control Mode: In this mode, at any given time interval, both the demand

and supply nodes are controlled. In each interval, the framework determines the

cost of achieving all possible supply demand matching values and chooses the one

which satisfies all the constraints with minimum cost. See Figure 3.6.

The simplicity of single control mode allows us to optimize over several intervals,

which is not possible in dual control mode. However, dual control mode can lead to

more optimized solutions within a single interval by controlling both the supply side

and the demand side.

Figure 3.6: High Level Overview of Dual Control Mode
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3.3 Modeling Smart Grid for Curtailment Selection

Now we mathematically define the smart grid model. As per our model, the Smart Grid

consists of M nodes. For each node, there are N curtailment strategies available. The

nodes are split into two disjoint sub-sets S: supply nodes andD: demand nodes. LetMs

be the number of supply nodes and Md be the number of demand nodes. Let T be the

number of time intervals in the curtailment horizon i.e., the intervals during which we

schedule the curtailment. Each supply node bs ∈ S is associated with a maximum supply

value Sbs(t)∀t ∈ {1, . . . , T}. Similarly, each demand node bd ∈ D is associated with

a maximum load value Lbd(t)∀t ∈ {1, . . . , T}. We are given time varying curtailment

matrices γs(t)ıRMs×N and γd(t) ∈ RMd×N with elements γs,bj(t) and γd,bj(t) denoting

the discrete supply and demand curtailment obtained by node b following curtailment

strategy j at time t ∈ {1, . . . , T} respectively. For each time t, we are also given a

cost matrices Cs(t) ∈ RMs×N and Cd(t) ∈ RMd×N where cs,bj(t) and cd,bj(t) denotes

the cost associated with node b following supply and demand curtailment strategy j

respectively. Let Xs(t) and Xd(t) be the decision matrices. Elements xs,bj(t) = 1 if

node b follows supply curtailment strategy j and 0 otherwise. Similarly, xd,bj(t) = 1

if node b follows demand curtailment strategy j in interval t and 0 otherwise. If the

framework is being used in single control mode, for each interval t, we are given a

curtailment target Γt calculated by taking the difference between the aggregate supply

and demand. Γt represents the desirable curtailment target for each period, however, it

might be exceeded. In order to limit wasteful curtailment, we are also given Γ, which

denotes the upper bound on the achieved curtailment in the curtailment horizon. The

notations used in the following sections are summarized in Table 3.1.
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Table 3.1: List of Variables in the Models
Variable Meaning
Ms Number of supply nodes
Md Number of demand nodes
N Number of curtailment strategies
T Number of time intervals in curtailment horizon
γs,bj(t) Curtailment achieved by supply node b following curtailment strat-

egy j at time t
γd,bj(t) Curtailment achieved by demand node b following curtailment strat-

egy j at time t
cs,bj(t) Cost of supply node b following curtailment strategy j at time t.

Essentially, cost associated with γs,bj(t)
cd,bj(t) Cost of demand node b following curtailment strategy j at time t.

Essentially, cost associated with γd,bj(t)
xs,bj(t) 0-1 decision variable which denotes whether supply node b should

follow (1) strategy j at time t or not (0)
xd,bj(t) 0-1 decision variable which denotes whether demand node b should

follow (1) strategy j at time t or not (0)
Γt Curtailment target for interval t
Γ Upper bound on the curtailment achieved in the curtailment horizon
αbBb, Bb Lower bound and upper bound on the curtailment budget for node b
S,D supply and demand node sub-sets
F Set of LV feeders
T Set of transformers
T (tx) Set of all nodes connected to transformer tx
F(f) Set of all nodes connected to feeder f
F tx(f) Transformer connected to feeder f
Captx Maximum solar capacity of distributor connected to transformer tx
Capf Maximum capacity of power flow from transformer to sub-station

via feeder f
Sb(t) Maximum supply for a supply node b in time interval t
Lb(t) Maximum load (demand) for a demand node b in time interval t

3.4 Modeling Smart Grid Network

The network model of the Smart Grid that we consider in this work is adapted from

the one used in [40] and is illustrated using Figure 3.7. Power from the high voltage

transmission network is fed into a sub-station, where the voltage is stepped down to be
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delivered to the Smart Grid. Several Low Voltage (LV) Feeders originate from the sub-

station and terminate in transformers which further steps down the voltage to deliver to

residential consumers using distributors.

Figure 3.7: Smart Grid Network Model

In a smart grid with a high PV penetration, several consumers with PV installations

can exhibit surplus supply which gets redistributed among the loads connected to the

same transformer using the shared distributors. We also assume that any remaining

surplus can be supplied back through the LV Feeders to the sub-station and eventually

to the other transformers. We assume an LV Feeder capacity limit on the surplus that

can be supplied back. We also assume that each distributor has an upper limit on the

power that can be fed into it from the solar supply. This limit could be artificially

applied by the utility to limit the generated power to ensure reliable grid operations as

the current grids are not planned for bi-directional power flows. Typically, transformers

have a capacity rating of the amount of power that can flow in each direction i.e. from

LV feeder to distributor and vice-versa. We assume that this rating is more than the

capacities of the LV feeder and the distributor and hence its modeling is redundant.
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Note that we do not assume any limits on the amount of power that can flow from a

sub-station to a transformer using the LV feeders and from a transformer to the loads

using the distributors. This is a reasonable assumption as a smart grid infrastructure is

typically planned to ensure uninterrupted supply to all the load consumers. The non-

zero capacity constraint of LV-feeders and the solar input capacity constraint of the

distributors are the additional constraints added to our network model when compared

with the one used in [40].

LetF denote the set of the LV-feeders and let T denote the set of all the transformers

in the Smart Grid. The capacity of a feeder f is Capf and that of a distributor connected

to transformer tx is Captx. The set of all the nodes connected to a transformer tx ∈ T

is denoted using T (tx). Note that T (tx) ∩ S and T (tx) ∩ D denote the supply and

demand nodes connected to the transformer tx respectively. The set of all the nodes

fed by an LV-feeder f is denoted using F(f). This contains all the nodes connected to

the transformer which is connected to the sub-station by the LV-feeder. F(f) ∩ S and

F(f) ∩ D represent the supply and demand nodes fed by the feeder f . We also use the

notation F tx(f) to represent the transformer connected to a feeder f .

Now, the total solar supply input to the distributor connected to a transformer should

be within its capacity. Hence,

Suptx(t) =
∑

bs∈T (tx)∩S

(Sbs(t)−
N∑
j=1

γs,bsj(t)xs,bsj(t)) ∀tx ∈ T ,∀t ∈ {1, . . . , T} (3.2)

Suptx(t) ≤ Captx ∀tx ∈ T ,∀t ∈ {1, . . . , T} (3.3)

Moreover, the total surplus power injected from the transformer into the sub-station

via a feeder should be within the capacity of the feeder. Therefore,

28



Supf (t) =
∑

bs∈F(f)∩S

(Sbs(t)−
N∑
j=1

γs,bsj(t)xs,bsj(t)) ∀f ∈ F , ∀t ∈ {1, . . . , T} (3.4)

Demf (t) =
∑

bd∈F(f)∩D

(Lbd(t)−
N∑
j=1

γd,bdj(t)xd,bdj(t)) ∀f ∈ F , ∀t ∈ {1, . . . , T} (3.5)

Supf (t)−Demf (t) ≤ Capf ∀f ∈ F ,∀t ∈ {1, . . . , T} (3.6)

Note that our network model considers only the capacity constraints of the infras-

tructure such as feeders and distributors. We do not consider the effects of the structure

of the network on local grid operating state variables such as voltage fluctuations or

phase imbalances.

3.5 Modeling Storage for Supply Demand Matching

Algorithms

Energy storage systems are being increasingly adopted in cooperation with renewable

energy sources such as solar PVs to provide uninterrupted supply to the consumers [30].

Storage systems can be used as a buffer to act as either supply or load when required,

thus reducing the uncertainty of renewable generation. Therefore, modeling storage

systems for supply demand matching algorithms will greatly improve the scope of the

algorithms.

The energy storage model that we consider is developed in [66]. We briefly describe

the significant parameters here:

• Energy Storage Capacity R (kWh): The maximum amount of energy that can

be stored. This energy is with reference to a minimum storage capacity i.e. the
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capacity below which the storage cannot be discharged. We assume the minimum

storage capacity to be zero.

• Storage Discharge Energy D (kWh): The maximum output/discharging power of

the storage multiplied by the interval duration. The storage output Dt for interval

t satisfies 0 ≤ Dt ≤ D.

• Storage Charge Energy G (kWh): The maximum input/charging power of the

storage multiplied by the interval duration. The storage input Gt for interval t

satisfies 0 ≤ Gt ≤ G.

• Charge (ηG) and Discharge (ηD) Efficiency: Charge efficiency ηG ∈ (0, 1) is the

ratio of charged power to the input power and discharge efficiency ηD ∈ (0, 1) is

the ratio of the output power to the discharged power.

Using the parameters above, storage capacity at time intervals t and t + 1 satisfy

Rt+1 = Rt + ηGGt− 1
ηD
Dt with the following constraints: 0 ≤ Rt+1 ≤ R, 0 ≤ Dt ≤ D

and 0 ≤ Gt ≤ G. A summary of the notations used in the energy storage model is listed

in Table 3.2.

Table 3.2: List of Variables in the Storage Model
Variable Meaning
R Energy storage capacity
Rt Energy storage available at time t
D Maximum storage discharge energy in a single interval
Dt storage discharged during interval t
G Maximum storage charge energy in a single interval
Gt storage charged during interval t
ηD Discharging efficiency
ηG Charging efficiency

The algorithms developed in this work focus on curtailment strategies. To incorpo-

rate storage, if the algorithm performs supply curtailment in an interval, storage can be
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used in charging mode to be interpreted as a supply curtailment. Similarly, if the algo-

rithm performs load curtailment, storage can be used in discharging mode. Our storage

model can easily be extended to more sophisticated storage scheduling in which a global

view of storage capacity across the intervals is considered and where storage can be used

both for charging and discharging irrespective of whether the algorithm is performing

supply curtailment or load curtailment.

3.6 NP-hardness of Supply Demand Matching Problem

In this section, we formally prove the NP hardness of the problem of supply demand

matching with the nodes exhibiting discrete operational states. In order to prove that

this problem is NP-hard, we will define a simpler version of the problem and reduce

the well known knapsack problem, which is an NP-hard problem to it. Adding any

additional constraints to this simpler version will only increase the complexity of the

problem.

The simpler version of the problem Π is formulated as follows: We are given a

set S of node-strategy pairs, where sij ∈ S : i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}

denotes the node-i-strategy-j pair, where M is the number of node and N is the num-

ber of strategies. Given a curtailment value Γ, we need to output a S∗ ⊆ S such

that Γ ≤
∑

i,j:sij∈S∗ γ(sij), where γ(sij) denotes the curtailment obtained by sij and∑N
j=1 I(sij) ≤ 1∀i ∈ {1, . . . ,M}, where I(sij) = 1 if sij ∈ S∗ and 0 otherwise and∑
i,j:sij∈S∗ C(sij) is minimized, where C(sij) denotes the cost of curtailment by sij .

Theorem 1. Π is NP-hard.

Proof. A 0-1 Knapsack problem [60] is defined as follows: Given M elements, with

element i having value vi and size di, find a sub-set of elements the sum of whose sizes

is ≤ D and the value is maximized. To reduce this problem into Π, for each element i,
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we add si1 with γ(si1) = −di and C(si1) = −vi. We set Γ = −D. Note that j ∈ {1}.

One can easily observe that 0-1 knapsack problem has a solution if and only if Π has a

solution.
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Chapter 4

Optimal Curtailment Selection for

Demand Response

In this chapter, we develop algorithms to perform selection of curtailment strategies for

each consumer to perform Demand Response. In this scenario, the supply is fixed and

the demand needs to be controlled to ensure that it remains less than supply. Demand

curtailment avoids costly supply ramp up thus lowering the cost of grid operations. As

supply is not controlled, all the algorithms discussed in this chapter run in single control

mode with only demand being controlled.

4.1 Problem of Curtailment Strategy Selection for

Demand Response

A Smart Grid is typically operated by a utility. The utility is responsible for provid-

ing power, controlling and monitoring the SmartGrid. In this chapter, we consider the

scenario in which the utility provider has a fixed power generation capacity. Typically,

this capacity is sufficient to fulfill the power requirements of the customers. However,

when there is a surge in the demand from the customers, the utility needs to ensure that

the demand is met by either adding generators or purchasing extra power from the spot

market, both of which increase expenditure. Failure to do so compromises the system

reliability and leads to blackouts.
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Power consumption profile of a consumers varies throughout the day with periods of

high demand interspersed with periods of low power consumption. Certain periods of

the day observe an overlap between the high demands of several customers. We denote

such periods with the power requirement of the grid substantially higher than the rest

of the day as peak demand period. The demand in a peak period can exceed the power

generation capacity.

To minimize or avoid the expenditure of purchasing extra power during peak demand

periods, utilities adopt the technique of Demand Response. Customers are either incen-

tivised to reduce their consumption during a Demand Response Event (DR-Event) or

they are penalized by increasing the cost of power during these periods. This reduces

the peak power consumption which is now expected to be met by the available genera-

tion capacity.

Using smart meters, utilities have the power consumption data of each customer.

The granularity of the data can be as small as 15 minutes. The power consumption

profile of a customer does not change rapidly from day to day, so it is straightforward to

predict future pattern. By employing prediction techniques, utilities determine the peak

demand periods. They also determine the targeted curtailment required for a DR-Event

which should be scheduled during this period. Discussion on the prediction techniques

is beyond the scope of this paper. Readers can refer to [13] for further knowledge on

this topic.

Utilities roll out a program to implement Demand Reponse and enroll customers

into it. A customer is provided with a list of strategies to be followed each of which

leads to a certain amount of curtailment in power consumption. Strategies can include

procedures such as increasing the temperature of the AC systems by 2 degrees or turning

off every other light in the hallways, etc. which reduce power consumption. During a

DR-Event, the utility signals each customer to follow a particular strategy. A consumer
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may be penalized if it fails to comply. For instance, the University of Southern California

SmartGrid consists of 50,000 sensors across the 170 buildings to monitor electricity

usage. Each building can adopt any one of seven available strategies during DR events

which occur on Weekdays 1-5 pm [3].

Careful selection of consumers is required to ensure that the targeted curtailment

value is met. A good selection algorithm determines the subset of consumers along with

the strategies they should follow during the DR-Event such that the achieved curtailment

value is as close as possible to the target. The reasons are as follows:

1. Limiting the amount by which the achieved curtailment value overshoots the tar-

get ensures that the grid is not underutilized. This avoids any loss of revenues to

the utility due to underutilization of grid by aggressive curtailment.

2. Limiting the amount by which the achieved curtailment value undershoots the

target ensures that the utility can avoid purchasing power from external sources

by bounding the peak demand of the customers.

In the following sections, we develop several formulations addressing various use

cases to optimally perform Demand Response.

4.2 Traditional Demand Response

We formally define the problem of optimal customer selection for Demand Response

(Traditional Demand Response) using the parameters defined in Table 3.1. We are given

a list of Md consumers and N strategies. Each consumer can adopt exactly one strategy

in the DR event. The decision variable xbj is 1 if consumer b adopts strategy j. We are

also given the curtailment in power consumption γd,bj obtained by consumer b adopting
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strategy j. A default strategy with a curtailment value of 0 is also included in the cur-

tailment matrix γd. A customer adopting a default strategy essentially means that it is

not participating in the DR event.

A targeted curtailment value Γ for the DR event is provided. The objective it to

achieve a curtailment value as close to Γ as possible. The ILP formulation for this

problem is as follows:

Minimize : |
Md∑
b=1

N∑
j=1

γbj ∗ xd,bj − Γ | (4.1)

Subject to :
N∑
j=1

xd,bj = 1, b ∈ {1, . . . ,M} (4.2)

xd,bj ∈ {0, 1}, ∀b, j (4.3)

Equation 4.1 minimizes the absolute curtailment error. Equation 4.2 ensures that a

consumer cannot adopt more than one strategy in the DR event. Detailed experimental

results for consumer selection using the above ILP is shown in Section 4.7.

4.3 Sustainable Demand Response

4.3.1 Motivation

The algorithm mentioned in the previous section might aggressively curtail the demand

in some intervals while accumulating demands in other intervals. Such assignments have

peaks in certain intervals, which can possibly exceed the generation capacity forcing the

utility to pay for additional procurement of energy.

We define the notion of Sustainable Demand Response (SDR) to address such cases.

SDR attempts to evenly smooth the curtailment over the entire period of the DR event.
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Hence we define SDR as the customer-strategy assignment which minimizes the ‖l‖1

distance between achieved curtailment values and a smoothed target value per interval.

As before we are given a set S ofMd consumers, N strategies. The entire DR period

is divided into discrete time intervals. Dynamic customer strategies are represented by

a time varying curtailment matrix γd(t) ∈ RMd×N with element γd,bj(t) denoting the

discrete curtailment value of consumer b adopting strategy j at time interval t where

t ∈ {1, . . . , T}. Let Xd(t) be the decision matrix with element xd,bj(t) denoting the

corresponding decision variable at time t with Γ denoting the achievable curtailment

value across the entire DR event.

4.3.2 ILP Formulation for Sustainable DR

We use the following ILP to model a Sustainable DR event.

Minimize :
T∑
t=1

εt (4.4)

Subject to : |
M∑
b=1

N∑
j=1

γd,bj(t)xd,bj(t)−
Γ

T
|≤ εt ∀t (4.5)

N∑
j=1

xd,bj(t) = 1 ∀b, t (4.6)

∀xd,bj(t) ∈ {0, 1} ∀b, j, t

The objective is the minimize the ‖L‖1 norm (Equation 4.4). As before, Equa-

tion 4.6 ensures that at any given interval, each consumer adopts exactly one strategy.

The various intervals in the ILP above are independent. This makes it trivial to paral-

lelize by solving each interval as a separate optimization problem on a single node in a

high performance cluster.
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4.4 Sustainable DR with Strategy Overheads

4.4.1 Motivation

Driven by our experience with existing DR implementations on the USC smartgrid, we

observe that it is impractical for customers to switch between too many strategies dur-

ing the DR event as this leads to additional overhead costs. We model this by associated

a cost of 1 for each strategy transition and by limiting the number of transitions for

each node by τ . An additional constraint is added to the ILP to incorporate the strategy

switching overheads. Note that under this formulation, a consumer is likely to have con-

tiguous strategies across intervals. In our experimental work section, we solve this ILP

exactly for reasonable problem sizes (representing the USC microgrid) using the IBM

CPLEX Solver. For very large problem sizes, the time required for an exact solution

might be large. In such cases, one can use randomized rounding heuristics based on the

LP-relaxation of the ILP to obtain approximate solution.
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4.4.2 ILP formulation for Sustainable DR with Strategy Overheads

We use the following ILP to model a Sustainable DR event with strategy overheads.

Minimize :
T∑
t=1

εt (4.7)

Subject to : |
Md∑
b=1

N∑
j=1

γd,bj(t)xd,bj(t)−
Γ

T
|≤ εt ∀t (4.8)

N∑
j=1

xd,bj(t) = 1 ∀b, t (4.9)

xd,bj(t) ∈ {0, 1} ∀b, j

Sbj(t) = | xd,bj(t)− xd,bj(t− 1) | ∀b, j, t ∈ {2, . . . , T} (4.10)
T∑
t=2

N∑
j=1

Sbj(t) ≤ 2τ ∀b (4.11)

The new constraints to limit the strategy switching are introduced using 4.10

and 4.11 where 4.10 calculates the number of times customer b switches a particular

strategy. Equation 4.11 bounds the total number of times a customer can switch strate-

gies. Since the state variable Sbj(t) counts both switching into and switching out from

strategy j, equation 4.11 uses 2τ as the bound. In our experiments, we fix the value of

τ = 2.
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4.5 NO-LESS: Near OptimaL CurtailmEnt Strategy

Selection for Supply Demand Matching in Micro

Grids

4.5.1 Problem Definition

We are given a set of Md nodes and N strategies. The entire curtailment horizon is

divided into discrete time intervals. We are given a time varying curtailment matrix

γd(t) ∈ RMd×N with element γd,bj(t) denoting the discrete curtailment value of node b

adopting strategy j at time interval t where t ∈ {1, . . . , T}. Let Bb be the maximum

curtailment value for node b. Let Xd(t) be the decision matrix with element xd,bj(t)

denoting the corresponding decision variable at time t. The achievable curtailment value

across the entire curtailment horizon is given by Γ. τb denotes the limit on the total cost

of strategy switches for a node b. We assume that strategy 1 is the default strategy with

a curtailment value of 0 i.e. if a node is not included in an interval of the curtailment

horizon, it follows strategy 1.

Given the model above, the objective is to determine node-strategy pairs for each

interval such that: (1) The curtailment target is achieved with minimum curtailment

error: difference between the achieved and the targeted curtailment, (2) No node is

curtailed more than its maximum allowable value, (3) only allowable strategy switches

are performed by each node across each consecutive intervals, and (4) for each node,

the cost incurred in switching strategies is within its allowable limit.
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4.5.2 ILP Formulation for NO-LESS

NO-LESS can be formulated using the following ILP:

Minimize ε (4.12)

s.t.

T∑
t=1

M∑
b=1

N∑
j=1

γd,bj(t)xd,bj(t)− Γ ≤ ε (4.13)

N∑
j=1

xd,bj(t) = 1 ∀b, t = 1, 2, . . . T (4.14)

T∑
t=1

N∑
j=1

γd,bj(t)xd,bj(t) ≤ Bb ∀b (4.15)

Sbij(t) = | xd,bi(t− 1)− xd,bj(t) |

∀b, ∀t, i, j ∈ {1, . . . , N} (4.16)

xd,b1(0) = 1 ∀b (4.17)

xd,bj(0) = 0 ∀b, j ∈ {2, . . . , N} (4.18)
T∑
t=2

N∑
i=1

N∑
j=1

(xd,bi(t− 1) + xd,bj(t)− Sbij(t))
χb(i, j)

2

≤ τb, ∀b (4.19)

ε ≥ 0 (4.20)

xd,bj(t) ∈ {0, 1} ∀b, ∀j, t = 1, 2, . . . T (4.21)

Equations 4.12, 4.13 ensure that the targeted curtailment is met with minimum

error. Equation 4.14 ensures that a node follows only 1 strategy in any interval. Equa-

tions 4.15- 4.19 ensure that the curtailment and switching cost for each node is bounded.

The ILP above returns the optimal solution, however due to its large execution time we

develop an FPTAS for it.
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4.6 Approximation Algorithms

In the previous sections, we formulated problems for various use cases using Integer

Linear Programs. ILPs return optimal solution, however, they require large execution

time and are not scalable. Hence, in this section we develop approximation algorithms

for the ILP algorithms defined above.

4.6.1 Fast
√

2-factor Approximation for Sustainable DR

We now describe a fast algorithm for computing approximately optimal sustainable DR

strategies. Our algorithm provides a
√

2-factor approximation to the optimal target dur-

ing each curtailment period and therefore for the entire DR event.

Theorem 2. Algorithm 1 is a
√

2-factor approximation to the optimal sustainable DR

solution.

Proof. Let Yt denote the curtailment value for period t returned by Algorithm 1. We

show that either Yt ∈ [ Γ
T
√

2
, Γ
√

2
T

] or Yt is the optimal curtailment value achievable for

that period. If line 2 of the algorithm is satisfied, then this is trivially true. Assume line

2 is not satisfied. From line 8, we must have Γ/(T
√

2) ≤ Yr =
∑r−1

b=1 γd,bkb + γd,rkr ≤

2 · Γ/(T
√

2) = Γ
√

2/T .

Finally, consider the case when when r = M and YM ≤ Γ/(
√

2T ). Since kb rep-

resents the strategy with the largest curtailment value ≤ Γ/(
√

2T ) for each customer b,

by definition Yr is the largest achievable curtailment value < Yp and so either Yp or Yr

is the optimal strategy for this period.

The following result follows from a straightforward analysis of the algorithm.

Theorem 3. Algorithm 1 can be used to compute
√

2-approximate sustainable DR solu-

tions in O(TMd logN) time when strategies are preprocessed in advance for a given
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Algorithm 1: Fast
√

2-factor Sustainable DR Approximation
Preprocessing: Non-decreasing sorted lists {γd,b(t)} of consumer-strategies for

each consumer b ∈ S and each interval t
1 for intervals t = 1 to T do
2 if ∃(k ∈ S) ∧ (j ∈ γd,k(t)) : γd,kj(t) ∈ [ Γ

T
√

2
,
√

2Γ
T

] then
3 xd,kj(t)← 1 ;

// Select consumer k and curtailment strategy
γd,kj(t)

4 else
5 (p, qp)← argminb∈S,j∈γd,b(t){γd,bj(t)|γd,bj(t) ≥ Γ

√
2/T} ;

// p and qp represent the customer and strategy
indices of the consumer with the smallest
curtailment value ≥ Γ

√
2/T

6 Yp ← γd,pqp(t) ;
7 For each customer b ∈ S : kb ← argmaxk{γd,bk(t) ≤ Γ/(T

√
2)} ;

8 Let r denote the smallest index such that
Yr ←

∑r
i=1 γd,bkb(t);Yr ≥ Γ/(T

√
2) ;

9 r ←M if
∑M

i=1 γd,bkb(t) < Γ/(T
√

2) ;
// Select Strategies for Activation as follows

10 if Yp − Γ
√

2/T ≤ Γ/(T
√

2)− Yr then
11 Set xd,pqp(t) = 1 ;
12 else
13 for b← 1 to r do
14 Set xd,bkb(t) = 1 ;
15 end
16 end
17 end
18 end

Output: Matrix {Xd(t)} of selected consumer-strategies ∀t. Bounded
curtailment values ε̂t ∈ [ ε̃t√

2
,
√

2ε̃t], where ε̃t = max(ε∗t ,Γ/T ), ε∗t is the
optimal solution to ILP.

curtailment target. The one-time preprocessing cost assuming apriori knowledge of

curtailment strategies is O(TMdN logN).

By precomputing and storing results for a range of target values, we can speed up

the retrieval of approximately optimal strategies even further to O(1) time.
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Note that the same algorithm can be used as an approximation algorithm for Tradi-

tional Demand Response.

4.6.2 A PTAS for Sustainable DR

While the approximation algorithm above can be used to very quickly compute sus-

tainable DR solutions, the error due to the
√

2-factor approximation may be unaccept-

ably large in some cases. Therefore, using ideas from the subset sum problem [35] we

develop a Polynomial Time Approximation Scheme (PTAS) that approximates the opti-

mal solution provided by the ILP in Equation 4.4 to within an arbitrarily small ε-factor

in time polynomial in MdN/ε. Since each customer is restricted to using exactly one

strategy, we cannot simply merge all the customer strategies and find the subset that

comes closest to the target Γ/T .

Theorem 4. Algorithm 2 is a PTAS for the ILP in Equation 4.4.

Proof Sketch: The number of intervals l ≈ log 1
1−ε

(Γ/T ) is polynomial in ln(Γ/T )
ε

.

In line 9, if a curtailment value is already marked feasible (i.e Q(k−1)
s (t) is 0), then

customer k does not contribute to the feasible solution. The total number of iterations

is O(lNMd). From line 7, using induction, we can show Vj+1 ≥
∑

γd,qr∈B
(M)
j (t)

γd,qr ≥

(1− δ)MVj+1 ≥ (1− ε)Vj+1 = Vj . and hence
∑

γd,qr∈B
(M)
j (t)

γd,qr ∈ [Vj, Vj+1]. Thus the

algorithm outputs an ε approximation to the optimal achievable target and is therefore a

PTAS. �.

4.6.3 FPTAS for NO-LESS

We first develop a dynamic programming based FPTAS to determine the set of curtail-

ment strategies followed by a single node b during the curtailment horizon to achieve a

curtailment value of at most (1 + ε)Γ, where ε is a user determined accuracy parameter.
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Algorithm 2: PTAS for Sustainable DR during each interval t

Preliminaries: V0 ← mini,j γd,ij(t); Z ← mini,j γd,ij(t) ≥ Γ/T ;
Divide [V0, Z] into l intervals {[Vi, Vi+1]}, Vi+1 = (1 + ε)Vi, 0 ≤ i ≤ l − 2,
Vl = Z ;
Initialization: ∀k ∈ S : Ykj ← Vi if γd,kj ∈ [Vi, Vi+1] ;
B

(0)
i (t)← ∅; Q(0)

i (t)← 0; i = 0, 1, . . . , n− 1 ;
// B

(k)
i (t) is a subset of the first k consumers, each

with a non-zero strategy selection, that add up to
a total curtailment value ∈ [Vi, Vi+1].

1 for Consumers k = 1 to Md do
2 for all intervals i, all strategies r do
3 Zir ← Q

(k−1)
i (t) + Ykr ;

4 Let Zir ∈ [Vs, Vs+1] ;
5 if ¬Q(k−1)

s (t) then
6 Q

(k)
s (t) ← Vs // Making Q

(k)
s (t) a feasible

curtailment value

7 B
(k)
s (t)← B

(k−1)
i (t)

⋃
γd,kr(t) ;

// Adding consumer k strategy r pair to the
feasible strategy set

8 end
9 end

10 end
Output: B(Md)

j (t): Selection of consumer-strategy pairs, where j is the closest
interval to DR target Γ/T with Q(M)

j (t) > 0

The cost of strategy switches will be bounded by τb. We then combine the results of all

the nodes to achieve the targeted curtailment value from all the nodes.

Achieving Curtailment Target for a Single Node

Let µ = εΓ
T

. For each γd,bj(t), we define γ̂d,bj(t) = bγd,bj(t)
µ
c. We also define Γ̂ = bΓ

µ
c.

We define a boolean function Θ which returns true if a curtailment value γ̂t can be
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achieved using strategy Sk at time t incurring a cost≤ qt for strategy switches and False

otherwise. Θ can be defined using the following dynamic programming formulation:

Θ(γ̂t, t, Sk, qt) = FALSE if γ̂t − γ̂d,bk(t) < 0||qt < 0

= ||jΘ(γ̂t − γ̂d,bk(t), t− 1, Sj, qt − χb(j, k))

(∀j ∈ {1, . . . , N}) otherwise (4.22)

If any of Θ(Γ̂, T, Sk, τb) ∀k ∈ {1, . . . , N} is True, we can determine the required

strategies by traversing the recursive formulation and determining the strategies at each

time t as described in Algorithm 3. The dynamic program can be solved by creating

a table of size Γ̂ × T × N × τb. We will refer to the entire table as Θ to simplify the

notations. We can initialize the table using the following equations:

Θ(γl, 1, Sk, q) =TRUE if γ̂d,bk(1) == γl∀k ∈ {1, . . . , N}

&& q >= χb(1k) ∀l

FALSE otherwise (4.23)

Lemma 1. Algorithm 3 finds the strategies to be followed in each interval by node b

to achieve the curtailment value Γ within a cost of τb for strategy switches with a time

complexity which is polynomial in N, T and 1
ε
.

Proof. We omit the proof of correctness as it can easily by argued using the arguments

used for dynamic programming algorithms. Now, filling a single entry of the table

requires O(N) time. Hence, the algorithm requires O(T
2N2τb
ε

) which is the dominating

term. We assume τb = O(T ) i.e. the ratio of the largest to smallest cost is bounded

and the number of switches is ≤ T , the algorithm is polynomial in N, T and 1
ε
. The

total number of entries in the table are Γ̂ × T × N × τb. N × Γ̂ × T × N × τb =
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Algorithm 3: A (1 + ε) polynomial time approximation algorithm to achieve the
curtailment value Γ by a single node b

1 Fill entries Θ(γ̂l, t, Sk, qt)∀γ̂l ∈ {0, . . . , Γ̂},∀t ∈ {1, . . . , T},∀Sk, k ∈
{1, . . . , N},∀qt ∈ {1, . . . , τb} using equations 4.22 and 4.23

2 Xd(t)← φ ∀t ∈ {1, . . . , T}
3 γcur ← Γ̂
4 qcur ← τb
5 for Time t = T to 1 do
6 if ∃k ∈ 1, . . . , N s.t Θ(γcur, t, Sk, qcur) then
7 if !Θ(γcur − cbk(t), t− 1, Sk, qcur) then
8 qcur ← qcur − 1
9 end

10 γcur ← γcur − γd,bk(t)
11 Xd(t)← Sk
12 end
13 end

Output: Xd, where Xd(t) denotes the strategy to be followed at time t

N × T
ε
× T × N × τb = O(T

2N2τb
ε

). If we assume that τb = O(T ) the algorithm is

polynomial in N, T and 1
ε
. (For loop requires only O(TN) amount of time after the

table is filled.)

Lemma 2. The total curtailment value obtained by following the strategies output by

Algorithm 3 is≤ (1+ε)Γ∗ where Γ∗ is the total curtailment value obtained by following

the strategies output by an optimal algorithm.

Proof. Let Γx be the curtailment value obtained by following the strategies output by

Algorithm 3. Let Γ∗ be the optimal curtailment value. Clearly, Γx ≤ µ
∑T

t=1 γd,bX(t)(t).

Also, Γ∗ ≥ µ
∑T

t=1(γd,bX(t)(t)− 1). This implies Γx ≤ Γ∗+µT ≤ Γ∗+ εΓ. Now, since

Γ ≤ Γ∗, Γx ≥ Γ∗(1 + ε).

Using Lemmas 1 and 2, we get the following theorem.
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Theorem 5. Algorithm 3 is a FPTAS to determine the strategy to be followed in each

interval 1, . . . , T to achieve a curtailment value Γ by a single node b with the cost of

strategy switches is bounded by τb.

Achieving Total Curtailment by all the Nodes

We will run step 1 of Algorithm 3 with curtailment value B̂b, the node-specific

maximum curtailment value, ε′ = ε
Md

, and limit on the cost on strategy switch-

ing τb for each node b ∈ {1, . . . ,Md} to create Θb. For a node b, define Φb =

∪ γ̂l | ∃{Sk, q} with Θb(γ̂l, T, Sk, q) = TRUE. Assume Φb is in sorted order. Let

L(Φb) denote the number of entries in Φb

We will again use a dynamic programming based algorithm for this problem. We

define a boolean function Ξ which returns True if a curtailment value γ̂b can be obtained

by using nodes {1, . . . , b} and False otherwise. Ξ can be defined using the following

formulation:

Ξ(γ̂b, b) = TRUE if ∃k ∈ {1, . . . ,L(Φb)}

s.t.Ξ(γ̂b − Φb(j), b− 1) is TRUE

= FALSE otherwise (4.24)

Ξ can be initialized for all γ̂b ∈ {0, . . . , Γ̂}, where Γ̂ = bΓ
µ
c, µ = εΓ

MdT
by the

following equations:

Ξ(γ̂b, 1) = TRUE if ∃k ∈ {1, . . . ,L(Φb)} s.t.γ̂b = Φb(k)

= FALSE otherwise (4.25)
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Given a total curtailment value Γ, Algorithm 4 can be used to combine the curtailment

values that can be achieved from individual nodes to attain the total curtailment value.

Algorithm 4: A (1 + ε) polynomial time approximation algorithm to achieve the
curtailment value Γ

1 Run Step 1 of Algorithm 3 for each node b with B̂b = b B̂b
µ
c, where µ = εΓ

MdT
,

ε′ = ε
Md

, and τ = τb and produce Φb

2 Fill entries Ξ(γ̂b, b)∀γ̂b ∈ {0, . . . , Γ̂},∀b ∈ {1, . . . ,Md} using equations 4.24
and 4.25

3 Xb(t)← φ ∀b ∈ {1, . . . ,Md},∀t ∈ {1, . . . , T}
4 γcur ← γ̂
5 for b = M to 2 do
6 if ∃k ∈ {1, . . . ,L(Φb)} s.t. Ξ(γcur − Φb(k), b− 1) == 1 then
7 Call Algorithm 3 with inputs Φb(k), T, τb to produce output X
8 Xb ← X
9 γcur ← γcur − Φb(k)

10 end
11 end

Output: X , where Xb(t) denotes the strategy to be followed by node b at time t

Theorem 6. Algorithm 4 is a FPTAS for NO-LESS

Proof. The correctness can be argued similar to that of Algorithm 3.

Let Γx be the curtailment value obtained by following the strategies output by Algo-

rithm 4. Let Γ∗ be the optimal curtailment value. Clearly, Γx ≤ µ
∑M

b=1

∑T
t=1 γd,bX(t)(t).

Also, Γ∗ ≥ µ
∑M

b=1

∑T
t=1(γd,bX(t)(t) − 1). This implies Γx ≤ Γ∗ + µMdT ≤ Γ∗ + εΓ.

Now, since Γ ≤ Γ∗, Γx ≥ Γ∗(1 + ε).

Step 1 of Algorithm 4 requires O(MdT
3N2

ε
) time. Step 2 requires O(Γ̂) time to fill

each of the Γ̂×Md entries hence, O(
M3
dT

2

ε2
) time. These being the dominating terms, the

total complexity of Algorithm 4 is O(
M3
dT

2

ε2
+ MdT

3N2

ε
) which is polynomial in Md, N, T

and 1
ε
.

The For loop contains Md calls to Algorithm 3 and hence requires O(Md × T 2N2

ε
)

time. Remark: In a typical micro-grid such as the one used for our experiments, typically
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the number of strategies is N ≤ 10 and the number of time intervals of the DR T ≤ 16

15-minute intervals i.e. 4 hours. However, the number of nodes is typically large and

keeps on increasing with new nodes being added to DR. Hence, our algorithm with a

complexity of O(
M3
d

ε2
) and an optimality guarantee of getting a solution within (1 + ε)

times the optimal for this NP-hard problem is a significant improvement over the state-

of-the-art techniques.
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4.7 Experimental Results

4.7.1 Experimental Setup for TDR and SDR

The USC SmartGrid has over 50,000 sensors to monitor electricity usage and equipment

status in real time [3]. Demand Response Events occur on weekdays between 1 and 5

pm. We use the data collected by the software developed to support data-driven demand

response optimization in USC smartgrid [62]. The software provides us the curtailment

values for each strategy that can be adopted by any building (customer) in USC for the

queried time interval. For our experiments we use the data from 27 buildings each of

which can adopt one of seven strategies. The data is collected for the time intervals

1-3 pm and 3-5 pm for each day from Monday to Friday. We run our experiments for

Targeted Curtailment values ranging from 100 kWh to 1400 kWh.

We use the Optimization Programming Language [2] to define the Integer Linear

Programming formulation developed in this paper. IBM ILOG CPLEX optimization

software [1] is used to solve the ILP and produce the set of customers and the strategies

they should adopt.

We compare our results with the state-of-the-art heuristic [76]. Authors in [76]

develop a change making problem based algorithm for customer selection. The change

making problem determines how to make a given amount of money using the least

amount of coins. The coins in the algorithm are the available customer-strategy pairs

and their values the predicted curtailment values. The amount to be made is the tar-

geted curtailment value. Customers are grouped into bins differentiated by their values.

A greedy algorithm is used to pick customers from the bins with highest values. We

choose this heuristic for comparison as it is used in practice by the USC SmartGrid to

schedule customers and their strategies for the DR events.
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4.7.2 Results and Analysis for TDR and SDR

The power consumption profile of a building is similar for the same day of a week across

different weeks. So by running our experiments on data collected from DR events over a

week, we are able to demonstrate our algorithm on a wide range of power consumption

profiles. Moreover, a typical DR-event in the USC SmartGrid starts with the selection

procedure at 1 pm and then another selection occurs typically around 3 pm. Therefore,

we consider them as two separate DR events for our experiments.

Figure 4.1 and 4.2 show the errors incurred by our ILP based customer selection

algorithm and the State-of-the-art heuristic [76] for every DR event from Monday to

Friday for various curtailment target values. As shown in Figure 4.1, the highest error

incurred by our ILP based algorithm is around 0.0002 kWh during the DR-events on

Tuesday 1-3 pm for a targeted curtailment of 600 kWh and Friday 3-5 pm for a targeted

curtailment of 800 kWh. For the State-of-the-art heuristic, the highest error incurred is

around 8 kWh during the DR event on Tuesday 3-5 pm for the targeted curtailment of

400 kWh as shown in Figure 4.2.

One may note that the errors between the state-of-the-art heuristic and our approach

differ by multiple orders of magnitude. so we take the ratio of the error for comparison.

A higher value of ratio implies better performance by our approach. In Figures 4.3-4.12

we compare the errors incurred by the two algorithms for various targeted curtailment

value for each DR event

The customer selection problem can be visualized as a packing problem. We are

trying to pack the targeted curtailment with values obtained from the customer-strategy

pairs. The ILP produces the best possible packing. Any error is due to the nature of

the data. Similarly, the heuristic based approach tries to provide best packing in each

of the bins. Error incurred in packing each bin accumulates throughout the algorithm

and may lead to very large errors. Since we are using real world data, as seen in the
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Figures 4.3-4.12 the peaks in the ratio of errors for various DR events varies with the

targeted curtailment values with no discernible pattern. The highest ratio observed is

around 3× 107 which occurs during the DR event on Thursday 1-3 pm.

Although solving an ILP is computationally intensive, optimal customer selection

for each target was obtained in less than 5 seconds on a standard workstation. This time

can be significantly reduced by using sophisticated computational platforms. Note that

in a typical DR Event, the utility determines the curtailment target well in advance. Thus

even a 5 second delay in computing the optimal customer-strategy pairs and signaling

the customers is tolerable.

4.7.3 Sustainable DR

In Figures 4.13-4.17, we compare the absolute errors in kWh incurred by the Sustainable

Demand Response (SDR) ILP formulation and the state-of-the-art heuristic for Targeted

curtailment values ranging from 50-1000 kWh. The vertical axis is limited to a maxi-

mum error of 3.0 kWh to ensure the readability of the graph. The actual error values are

given in the table below the graphs.

Our SDR ILP is more restrictive as it ensures that the curtailment is distributed

evenly across the intervals which is not a constraint in the state-of-the-art heuristic.

Despite this restriction, our SDR ILP perform 4-2000 times better than the heuristic.

The only time the heuristic performs better than our ILP is on Wednesday for a Target

of 1000 kWh where the error of our SDR ILP is 0.048 kWh while that of the heuristic

is 0.001 kWh.

To emphasize the significance of Sustainable DR over a DR targeting the entire

interval, we compare the demand curtailment values achieved in each interval for the

DR event for the targeted curtailment value of 1200 kWh. The DR ILP targeting the

entire interval (TDR) incurs an error of 0.002 kWh which is far lower that the 0.031 kWh
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Figure 4.1: Error incurred by ILP based Algorithm for various targeted Curtailment
Values for Different DR Event

error incurred by the Sustainable DR ILP. However, most of the curtailment is achieved

in intervals 10 and 11 and the rest of the intervals have lower curtailment values. The

Sustainable DR achieves a curtailment value of around 75 kWh in each interval.

4.7.4 Sustainable DR with Strategy Overheads

The motivation behind using Sustainable DR with strategy overheads is to reduce the

number of times each building switches its strategy in the DR interval. We limit the

number of times building i can switch strategies to τ = 2. In Figures 4.13-4.17, we
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Figure 4.2: Error incurred by State-of-the-art Algorithm for various targeted Curtailment
Values for Different DR Event

compare the absolute errors in kWh incurred by the Sustainable Demand Response with

limits on strategy switching (SDR with switch limit) ILP formulation and the state-

of-the-art heuristic for Targeted curtailment values ranging from 50-1000 kWh. The

vertical axis is limited to a maximum error of 3.0 kWh to ensure the readability of the

graph. The actual error values are given in the table below the graphs.

The SDR with strategy overheads is even more restrictive than the SDR ILP. This is

reflected in the errors incurred which are an order higher than the SDR ILP. However,

SDR with strategy overheads still performs 2-700 times better than the state-of-the-art
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Figure 4.3: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Monday 1-3 pm

heuristic. The only times the heuristic performs better than our ILP is on Wednesday

for a Target of 1000 kWh where the errors 0.083 kWh and 0.001 kWh respectively and

on Tuesday for a Target of 400 kWh where the errors are 0.203 kWh and 0.172 kWh

respectively for our ILP and the heuristic. The maximum relative error incurred by our

ILPs is 1% whereas for the heuristic we observed relative errors as high as 12 %.

ILP is a computationally intensive process. To converge to the error rates shown

in the results, the IBM CPLEX required 5-10 minutes of processing time. Since DR

programs are based on predictive data [13] which are available in advance, the time

required can be perceived as reasonable.
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Figure 4.4: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Monday 3-5 pm

Figure 4.5: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Tuesday 1-3 pm
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Figure 4.6: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Tuesday 3-5 pm

Figure 4.7: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Wednesday 1-3 pm
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Figure 4.8: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Wednesday 3-5 pm

Figure 4.9: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Thursday 1-3 pm
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Figure 4.10: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Thursday 3-5 pm

Figure 4.11: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Friday 1-3 pm
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Figure 4.12: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR event
Friday 3-5 pm

Figure 4.13: Absolute errors in kWh incurred for Sustainable DR event on Monday 1-5
pm
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Figure 4.14: Absolute errors in kWh incurred for Sustainable DR event on Tuesday 1-5
pm

Figure 4.15: Absolute errors in kWh incurred for Sustainable DR event on Wednesday
1-5 pm
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Figure 4.16: Absolute errors in kWh incurred for Sustainable DR event on Thursday 1-5
pm

Figure 4.17: Absolute errors in kWh incurred for Sustainable DR event on Friday 1-5
pm
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Figure 4.18: Comparison of demand curtailment values achieved in each interval for
SDR and TDR for the targeted curtailment value of 1200 kWh

4.7.5 NO-LESS

Experimental Setup for NO-LESS

We evaluate NO-LESS using the curtailment dataset obtained by the DR programs con-

ducted in the University of Southern California (USC). The USC micro grid consists

of more than 150 buildings equipped with smart meters to capture consumption data in

15-minute intervals. Each DR lasted for 4 hours during which each building switched

to one out of 6 available strategies [36]. The curtailment data was obtained by using the

algorithm developed in [22]. Althoug NO-LESS is developed for load curtailment, we
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also evaluated its performance for strategy selection for solar curtailment. For solar cur-

tailment, we use simulated data generated by using solar irradiance data for Los Angeles

County [5] and varying the solar PV are from 10m2 to 20m2 and the yield from 5% to

15%. 6 different curtailment strategies: 0, 0.125 ∗O, 0.25 ∗O, 0.5 ∗O, 0.75 ∗O,O, with

O being the maximum output were generated. The cost of switching between strategies

was fixed as 1. And the cost of strategy switching was limited to 10. The allowable

strategy switches were 0 ↔ 1 ↔ 5, 0 ↔ 2 ↔ 4 ↔ 5 and 0 ↔ 3 ↔ 5, where 0 is the

default strategy with a curtailment value of 0. We implemented the NO-LESS in Java.

The experiments were performed on Dell optiplex with 4-cores and 4 GB RAM.
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Figure 4.19: Near Optimality of NO-LESS

Near Optimality

We implemented an Integer Linear Program (ILP) for the problem objective to obtain

optimal solutions. We varied the targeted curtailment values from 100 kWh to 2000

kWh. The number of nodes was fixed at 20. Figure 4.19 shows the relative percentage
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error incurred by NO-LESS algorithm compared against the optimal solution. Relative

percentage error is defined as: (P−O)∗100
O

, where P is the solution obtained by NO-LESS

and O is the optimal solution obtained by the ILP. As shown in the figure, the relative

percentage errors incurred by NO-LESS are much less than the worst case guarantee as

determined by ε.

Notice that the relative percentage error increases as the curtailment target increases.

This is because our algorithm is essentially a packing problem. For lower curtailment

values, the algorithm has enough available node-strategy pairs to choose from to pack.

However, as the curtailment value increases, the availability of such pairs becomes

sparse. While the optimal algorithm tries all possible combination for optimizing the

packing, our algorithm terminates as soon as it finds one which is within the worst case

guarantee ε.

Scalability

NO-LESS algorithm has two critical parameters which affect scalability: the number of

nodes M and the accuracy parameter ε. Note that our algorithm is independent of the

targeted curtailment value.
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Figure 4.20: Execution Time vs Number of nodes for different values of epsilon
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Figure 4.20 shows the effect on the execution time of the number of nodes for various

values of ε. For each ε, the execution time increases polynomially with respect to the

number of nodes. Even for an accuracy parameter of 5%, the runtime is less than 4

minutes.
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Figure 4.21: Execution Time vs epsilon for different number of nodes
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Figure 4.22: Execution Time vs Number of Buildings for ε = 0.01

Figure 4.21 shows the trade-off between the accuracy parameter ε and the execution

time in seconds for various number of nodes. The execution time increases quadratically

with respect to 1
ε
. For very small values of ε such as 0.01 (1%), this leads to very large

67



runtimes such as 600 seconds for 50 nodes. However, our algorithm fills the dynamic

programming table in such a way that all entries in a row can be independently populated

by looking at the entries of previous columns. This provides us with an opportunity to

easily parallelize the algorithm to achieve dramatic improvement in the runtime. We do

not perform such analysis in this work.

Comparison with State-of-the-art Techniques

We also compared our algorithm against a change making scheduler [76] based heuristic

and an LP based algorithm [34] whose results are rounded to the nearest integers. The

errors for the LP based algorithm range from 20% to 95% while that for the change

maker heuristic range from 2% to 10%. Theoretically, both these heuristics can have

unbounded errors. In contrast, the errors incurred by our algorithm are less than 1.5%

for ε = 0.05 and less than 0.25% for ε = 0.01. Table 4.1 compares the theoretical and

experimental errors and the computation time of our algorithm for various values of ε

with state-of-the-art techniques. Our algorithm, with a small increase in runtime is able

to provide solutions with extremely low errors as shown in the table.

Table 4.1: Error and Scalability (20 nodes) Comparison
Technique Theoretical Error Experimental Error Time

Change Making [76] None 2-10% ≈1 second
LP based algorithm [34] None 20-95% ≈1 second

NO-LESS (ε = 0.05) 5% <1.5% 2.2 seconds
NO-LESS (ε = 0.01) 1% <0.25% 33 seconds
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4.8 Automated Dynamic Demand Response Implemen-

tation on USC Campus

We implemented D2R on USC campus micro-grid to demonstrate its large scale feasi-

bility and identify and resolve the challenges associated with practical deployment. Our

D2R technique uses learning of occupant energy strategy preferences (at fine grained

scales ranging from buildings to floor levels within buildings) to make accurate elec-

tricity consumption predictions and individual curtailment recommendations using the

algorithms developed in this chapter using only a small subset of consumption data.

4.8.1 D2R Implementation

Buildings on our campus are instrumented with smart metering and control that can be

used to implement a large number of advanced energy curtailment strategies such as

resetting temperature set points, reducing air flow, duty cycling. A simplified control

and data flow diagram of our D2R implementation is shown in Figure 4.23. The micro-

grid utility initiates a DR event using OpenADR messages and provides a curtailment

target γ to be achieved over a given DR interval T , typically 4 hours. The Policy Engine

(PE) module provides campus wide curtailment strategy policy recommendations based

on the analysis of historical consumption data and curtailment maximization customer

(building) selection algorithms. Smart meter data is aggregated over 15 minute intervals

into a consumption database. State-of-the-art data-driven models are then used by the PE

module to predict energy consumption values over each 15 minute period comprising

the entire DR interval T for each building across campus. This information is then

provided to the optimization module in the form of a discrete time varying curtailment

matrix. The outputs of the PE are sets of buildings-strategy pairs at 15 minute intervals

that will achieve the required curtailment target γ over T .
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Figure 4.23: Control and Data Flow For D2R Implementation

Our Policy Engine (PE) is composed of an influence model based demand predic-

tion engine that feeds into a building-strategy selection optimization module as shown

in Figure 4.24. Historical data from the energy consumption database before the DR

day is used in conjuction with time series forecasting techniques such as ARIMA and

Lasso-Granger (for learning temporal dependencies among multiple timeseries) to learn

occupant energy strategy preferences and load profiles. A significant challenge is to

ensure accurate prediction in the absence of high quality consumption data. To ensure

quality data we have developed several techniques: interpolation methods for estimating

intermittent missing data and sophisticated influence based learning models for estimat-

ing systematically unavailable data over larger periods. We have shown that only a small

subset (≈7%) of the meters are required in real-time to make predictions for buildings

across the campus micro-grid [13].

The results of our adaptive customer prediction models are fed into our optimiza-

tion module which consists of fast approximation algorithms for ILP based fair energy
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Figure 4.24: Policy Engine

curtailment maximization [37]. Given a targeted curtailment value γ over DR interval

T , curtailment matrix M , the optimization module selects sets of building-strategy pairs

for each 15 minute interval to achieve the curtailment value γ over T . Note that optimiz-

ing for γ over interval T without considering per-period curtailment values might lead

to aggressive curtailment in some periods and low curtailment in others. This could be

unsustainable to the utility as demands in periods with low curtailment may exceed the

generation capacity. Therefore, we have defined and implemented the notion of Sustain-

able DR (SDR) in which the targeted curtailment value γ is distributed proportionally (as

{γt}) across interval T [37]. Additionally, we have included the notion of fairness (via
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building curtailment budgets) and strategy switching overhead as constraints in our opti-

mization algorithm. We have shown that this problem is NP-hard and have developed

fast polynomial time approximation schemes (PTAS) as well as bounded randomized

rounding heuristics with provable error bounds i.e. deviation from the curtailment target

γ. We have shown that our SDR algorithms achieve results with a very low absolute

error of 0.001-0.05 kWh range [37].

4.8.2 Implementation Challenges

Real time quality data availability is a key challenge that we have addressed earlier (Sec-

tion 4.8.1). Real world challenges such as changing environmental conditions may affect

our prediction accuracy, buildings may have to be dropped out of DR due to unrespon-

siveness or thermal comfort violation. We address such cases by performing dynamic

customer re-selection to offset deviations in the curtailment target. Another challenge is

scalability while maintaining curtailment accuracy which we have addressed by devel-

oping fast polynomial time approximation algorithms with bounded errors. Finally,

extending our implementation to a large city environment will face human behavioral

challenges. Determining the right customer incentives to obtain a reasonable compli-

ance rate is an open challenge that needs to be addressed.

4.8.3 Overall DR Evaluation

In this section, we discuss the performance of a DR event performed on the campus. 28

buildings were available for the 4 hour long event from 1 pm to 5 pm. Each building

had anywhere between 1 to 7 strategies available to it. A targeted curtailment of 6400

kWh was set. the Policy Engine provided building-strategy pair recommendations to

the FMS using the predicted curtailment values. It estimated that a curtailment of 2332

kWh can be obtained using the available building-strategy pairs.
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Practical challenges such as increase in temperature above the comfort zone, res-

ident complaints etc. lead to dropping out of certain buildings during the DR event.

Sometimes buildings fail to respond to the signals for adopting the suggested strategies.

Hence, the actual obtained curtailment value was 2103 kWh for the entire DR event as

opposed to the estimated 2332 kWh.
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Figure 4.25: Consumption profile of building THH during DR

In Figures 4.25- 4.28, we show the energy consumption profile of a few buildings

which achieved the highest curtailment values. The x-axis denotes the time of the day

and the y-axis denotes the energy consumption value in kWh. For simplicity, we assume

that the consumption in the absence of DR would be the observed value at the start of DR

event (1pm). This is denoted by the red line in the figures. The buildings THH, MRF and

WPH followed the technique of Variable Frequency Drive Speed Reset (VFD) [50] and

obtained a curtailment value of 310, 145 and 98 kWh respectively. The building VKC
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Figure 4.26: Consumption profile of building VKC during DR

adopted a combination of Variable Frequency Drive Speed Reset (VFD) and Equipment

Duty Cycling (DUTY) [50] and obtained a curtailment value of 169 kWh.

However, not every building achieved the expected curtailment value. Figures 4.29-

4.30 show the consumption profile of buildings BHE and DRB which achieved a nega-

tive curtailment value. Due to some practical limitations, these buildings failed to adopt

the strategies the FMS signaled them to implement.
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Figure 4.27: Consumption profile of building MRF during DR
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Figure 4.28: Consumption profile of building WPH during DR
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Figure 4.29: Consumption profile of building BHE during DR
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Figure 4.30: Consumption profile of building DRB during DR
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Chapter 5

Cost Optimal Supply Demand

Matching

In this section, we develop algorithms for discrete supply demand matching by con-

trolling both supply and demand nodes. Algorithms developed in Sections 5.1, 5.2

and 5.4.1 assume a single control mode while the algorithm developed in Section 5.4.2

can be used in dual control mode.

5.1 Minimum Cost Supply Demand Matching

Given the Smart Grid Model above, the objective of the Minimum Cost Supply Demand

Matching Algorithm is to determine node-curtailment strategy pairs for each interval

of the curtailment horizon such that: (1) The curtailment target Γt for each interval t

is achieved, (2) the cost is minimized for the entire curtailment horizon, and (3) the

aggregate curtailment across the entire curtailment horizon is no more than Γ.

This problem, as we show in Section 3.6 is NP-hard. We first formulate the problem

using an Integer Linear Program (ILP). However, the time complexity for solving ILPs

is exponential. Hence, we develop a polynomial time approximation algorithm for the

same.

More formally, we develop an algorithm with a runtime which is polynomial in

the input size M,MN and T and 1
ε
, where ε is an approximation guarantee (accuracy)

parameter, which ensures that objective of the problem is minimized and in the worst
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case the constraints are violated by a maximum factor of (1 ± ε). Here M = Ms or

Md based on whether supply curtailment is being performed or demand curtailment.

To develop the approximation algorithm, we use a dynamic programming algorithm

(Equation 5.6) which for each interval t, determines the cost of achieving various cur-

tailment values, each of which is ≥ Γt. We then use another dynamic programming

algorithm (Equation 5.7) to combine the results of each interval to achieve an aggre-

gated curtailment value of ≤ Γ with minimum cost. The sizes of the tables of both the

dynamic programming algorithms are proportional to the maximum possible cost. This

leads to very large runtime to solve the problem exactly. Hence, we scale and round the

costs. The scaling and rounding causes several curtailment values to be indistinguish-

able, this introduces error into the value of our solution. Thus the resulting algorithm is

an approximation algorithm (as opposed to exact algorithm) which produces an approx-

imate solution in polynomial time which is independent of the maximum cost. We

provide the worst case approximation guarantee for the algorithms.

In the following sections, to simply notations γ, c, x denote the variables correspond-

ing to either supply or demand nodes based on whether supply curtailment is being

performed or demand curtailment.

5.1.1 ILP Formulation

The ILP formulation for the Minimum Cost Supply Demand Matching problem is as

follows:
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Minimize :
M∑
b=1

N∑
j=1

T∑
t=1

cbj(t)xbj(t) (5.1)

s.t.

M∑
b=1

N∑
j=1

γbj(t)xbj(t) ≥ Γt ∀t (5.2)

M∑
b=1

N∑
j=1

T∑
t=1

γbj(t)xbj(t) ≤ Γ (5.3)

N∑
j=1

xbj(t) == 1 ∀b, t (5.4)

xbj(t) ∈ {0, 1} ∀b, j, t (5.5)

Equation 5.2 ensures that the curtailment target for each time interval is achieved.

Equation 5.3 ensures that the aggregate curtailment is less than the maximum limit Γ.

Equation 5.4 ensures that each node in each time interval follows exactly one strategy

(possibly the default strategy with 0 curtailment value).

5.1.2 Approximation Algorithm

Let Γmin = mint{Γt} be the smallest curtailment target among all the intervals. Define

µ = εΓmin
M

. For each γbj(t), define γ̂bj(t) = dγbj(t)
µ
e. Similarly, define Γ̂ and Γ̂t∀t. We

refer to these values as rounded curtailment values.

For each interval t, we define a function Θt : Z+ ∪ {0} × {1, . . . ,M}. Θt(γ̂, b)

denotes the minimum cost required to achieve a curtailment value of γ̂ using nodes

1, . . . , b where b ∈ {1, . . . ,M}. Θt can be defined recursively as:
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Θt(γ̂, b) =



minj{cbj(t)} if b = 1 and

∃j | γ̂ = γ̂bj(t)

∞ if b = 1 and

γ̂! = γ̂bj(t) ∀j

∞ if γ̂ < 0

minj{Θt(γ̂ − γ̂bj(t), b− 1) + γ̂bj(t)} otherwise

(5.6)

Algorithm 5: Determine node strategy pairs given (c, γ̂) ∈ St
Input: (c, γ̂), t

1 xbj(t) ∈ X(t)← 0∀b, j
2 γcur ← γ̂
3 for b = M to 1 do
4 if b 6= 1 then
5 j ← argminj{Θ(γcur − γ̂bj(t), b− 1) + cbj(t)}
6 else
7 j ← j | γ̂bj(t) == γcur
8 end
9 xbj(t)← 1

10 γcur ← γcur − γ̂bj(t)
11 end

Output: Output X(t), the list of curtailment strategies to be followed by each
node in interval t.

The dynamic program can be solved by creating a table of size k×M , where k = Γ̂

for each interval. For notational simplicity, we refer to table using the same variable Θt

as the recursive function. Once the table is filled, for each interval t, we define a set

St = {(Θt(γ̂,M), γ̂)|γ̂ ≥ Γ̂t}. For any element (Θt(γ̂,M), γ̂) ∈ St, Algorithm 5 can

be used to determine the strategies to be followed by each node to achieve γ̂ with cost

Θt(γ̂,M) in the interval t.
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Algorithm 6: Minimum Cost Supply Demand Matching Algorithm
Input: C(t), γ(t),Γt,∀t,Γ

1 Compute γ̂bj(t), Γ̂t∀t, Γ̂
2 Fill the table Θt∀t using equation 5.6
3 Compute St = {(Θt(γ̂,M), γ̂)|γ̂ ≥ Γ̂t}∀t
4 Fill the table Φ using equation 5.7
5 γ̂cur ← argminγ̂{Φ(γ̂, T )|γ̂ ≤ Γ̂}
6 if γ̂cur == φ then
7 No curtailment strategies exist
8 Exit Algorithm
9 end

10 for t = T to 1 do
11 if t 6= 1 then
12 j ← argminj | (cj ,γ̂j)∈St {Φ(γ̂cur − γ̂j, t− 1) + cj}
13 else
14 j ← j | γ̂ = γ̂j, (cj, γ̂j) ∈ St
15 end
16 Run Algorithm 1 with (cj, γ̂j) to get X(t)
17 γ̂cur ← γ̂cur − γ̂j
18 end

Output: X(t)∀t, the list of curtailment strategies to be followed by each node in
each interval

Now, given St∀t ∈ {1, . . . , T}, we need to select exactly one element et = (ct, γ̂t) ∈

St∀t such that
∑T

t=1 γ̂t ≤ Γ̂ and
∑T

t=1 ct is minimized. We define a function Φ : Z+ ∪

{0}×{1, . . . , T}. Φ(γ̂, t) denotes the minimum cost required to achieve the curtailment

value of γ̂ and time intervals 1, . . . , t. Φ can be defined recursively as:
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Φ(γ̂, t) =



minj{cj} if t = 1 and

∃j | γ̂ = γ̂j, (cj, γ̂j) ∈ St

∞ if t = 1 and

γ̂! = γ̂j ∀j | (cj, γ̂j) ∈ St

∞ if γ̂ < 0

minj | (cj ,γ̂j)∈St {Φ(γ̂ − γ̂j, t− 1) + γ̂j} otherwise

(5.7)

This dynamic program requires a table of size k×T , where k = Γ̂. Again, for nota-

tional simplicity, we refer to table using the same variable Φ as the recursive function.

Algorithm 6 can be used to determine the curtailment achieved in each interval and the

corresponding node strategy pairs.

Theorem 7. Algorithm 6 is a polynomial time algorithm for minimum cost supply

demand matching which in the worst case violates the maximum curtailment constraint

(Equation 5.3) by at most (1 + ε) factor and violates the per interval curtailment target

constraint (Equation 5.2) by at most (1− ε) factor.

Proof. For a curtailment value γ, we say that γ̂ is the rounded curtailment value. Also,

we call γ as the unrounded curtailment value. Correctness: We define Bucket of γ̂ as

the range µγ̂ − µ < γ ≤ µγ̂ i.e. all the curtailment values which get rounded to γ̂. CΘ
γ̂

denotes the cost assigned to the bucket in table Θ. For each interval t, using induction

on Equation 5.6, it is easy to show that CΘt
γ̂ ∀t, 0 ≤ γ̂ ≤ Γ̂ will be the minimum cost

required to achieve any curtailment value in the Bucket of γ̂ for table Θt. Hence, for each

element et = (ct, γ̂t), ct is the minimum possible cost to achieve any curtailment value
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in the Bucket of γ̂t corresponding to the table Θt. Now, if we can show that the range

of curtailment values covered by the elements in St∀t contains the curtailment value

chosen by any optimal solution, and that the cumulative curtailment value of any optimal

solution at any time t is contained in the entries Φ(:, t) (i.e. entries corresponding to

time interval t), then using induction on Φ table, we can show the aggregate cost of the

solutions obtained by Algorithm 6 will be less than or equal to the optimal solution.

Now, in each interval, the lowest rounded curtailment value γ̂ considered to create the

set St is γ̂t. Hence, the lowest unrounded curtailment γ satisfies: γt − µ < γ ≤ γt i.e.

γ ≤ γt. Now, the maximum rounded curtailment value γ̂ considered by Algorithm 2 in

the Φ table is Γ̂. So, the maximum curtailment value γ considered in the corresponding

bucket is µΓ̂ ≥ Γ. Hence, the range of curtailment values considered by Algorithm 6

covers the range in which optimal solution can reside and so Algorithm 6 does not miss

any possible solution of a lower cost.

Runtime: The Algorithm fills T Θ tables each of which is of size M Γ̂. We assume

that Γ = O(TΓmin). Each entry of Θ requires O(N) time. Hence, the total runtime for

line 2 and 3 of Algorithm 6 is O(M
2NT 2

ε
).

The number of entries in table Φ is O(T Γ̂). Each entry requires O(Γ̂) time. Hence,

the total required time to fill Φ is O(T Γ̂2 = O(T
3M2

ε2
)). Once the tables are filled, the for

loop requires O(TMN Γ̂) to output the strategies. Hence, the algorithm is polynomial

in the input size M,N, T and 1
ε
.

Approximation Guarantee: Let Γ̂x =
∑M

i=1

∑T
t=1 γ̂it be the solution from our algo-

rithm, where γ̂it denotes the rounded curtailment by node i in time t. From line 3 of

the algorithm, for all t, we know that
∑M

i=1 γ̂it ≥ Γ̂t. Also, γit
µ
≤ γ̂it ≤ γit

µ
+ 1 by

the definition of γ̂it. This implies that Γt
µ
≤

∑M
i=1(γit

µ
+ 1) ≤

∑M
i=1

γit
µ

+ M . So,

Γt−µM ≤
∑M

i=1 γit =⇒
∑M

i=1 γit ≥ Γt− εΓmin ≥ (1− ε)Γt as Γt ≥ Γmin. Hence, in
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each interval, the curtailment target constraint (Equation 5.2) is violated by a maximum

factor of (1− ε).

Now, from line 5 of the algorithm, Γ̂x ≤ Γ̂. So, Γx
µ
≤ Γ

µ
+ 1. This means that

Γx ≤ Γ + εΓmin
M
≤ Γ(1 + ε

M
) ≤ Γ(1 + ε) as Γmin ≤ Γ and M ≥ 1. Hence, the

aggregate curtailment target constraint (Equation 5.3) is violated by a maximum factor

of (1 + ε).

5.2 Minimum Cost Supply Demand Matching with

Fairness

Curtailment from a node leads to a loss of utility for the node. Hence, it would be

unfair to force some nodes to incur losses due to high curtailment while leaving others

with minimal curtailment. The Minimum Cost Supply Demand Matching Algorithm

discussed in the previous section does not take fairness into account and can lead to

solutions with uneven curtailment values from the nodes. We address the issue of fair-

ness in this section by assigning a curtailment budget range (which can be set by the grid

operator) to each node. The algorithm, by ensuring that no node incurs a curtailment

more or less than its budgeted range over each curtailment horizon, ensures that supply

demand is done in a fair manner.

Similar to the previous problem, we first develop an ILP formulation for this prob-

lem. We then relax the ILP into a Linear Program (which can be solved in polynomial

time) and round back the results to integers. This rounding, however, violates certain

constraints and increases the objective value. We provide guarantees on the worst case

violation of the constraints and the increase in the objective value in the worst case.

84



5.2.1 ILP Formulation

Let [αbBb, Bb] be the curtailment budget for node b with αb ∈ [0, 1]. Both Bb and αb

are determined by the grid operator. The problem of minimum cost supply demand

matching with fairness can be formulated using the following ILP:

Minimize :
M∑
b=1

N∑
j=1

T∑
t=1

cbj(t)xbj(t) (5.8)

s.t.

M∑
b=1

N∑
j=1

γbj(t)xbj(t) ≥ Γt ∀t (5.9)

M∑
b=1

N∑
j=1

T∑
t=1

γbj(t)xbj(t) ≤ Γ (5.10)

αbBb ≤
N∑
j=1

T∑
t=1

γbj(t)xbj(t) ≤ Bb ∀b (5.11)

N∑
j=1

xbj(t) == 1 ∀b, t (5.12)

xbj(t) ∈ {0, 1} ∀b, j, t (5.13)

Equation 5.11 is the additional constraint added that ensures that each node curtails

an amount within its budgeted range.

5.2.2 Approximation Algorithm

The ILP formulated in Section 5.2.1, when relaxed to a Linear Program will lead to

unbounded errors. Hence, we first redefine the ILP. We define γ′b(t) − γ′bj(t) = γbj(t),

where γ′b(t), is the maximum operational value for node b at time t and γ′bj(t) is the
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reduced operational value of node b at time t by following strategy j with curtailment

value γbj(t). the redefined ILP is as follows:

Minimize :
M∑
b=1

N∑
j=1

T∑
t=1

cbj(t)xbj(t) (5.14)

s.t.

M∑
b=1

N∑
j=1

γ′bj(t)xbj(t) ≤
M∑
b=1

γ′b(t)− Γt ∀t (5.15)

M∑
b=1

N∑
j=1

T∑
t=1

γbj(t)xbj(t) ≤ Γ (5.16)

N∑
j=1

T∑
t=1

γbj(t)xbj(t) ≤ Bb ∀b (5.17)

N∑
j=1

T∑
t=1

γ′bj(t)xbj(t) ≤
T∑
t=1

γ′b(t)− αbBb ∀b (5.18)

N∑
j=1

xbj(t) == 1 ∀b, t (5.19)

xbj(t) ∈ {0, 1} ∀b, j, t (5.20)

We note that the above ILP is an instance of k column sparse Packing Integer Prob-

lem (PIP) i.e. a packing integer problem in which there in an upper limit k on the number

of constraints a variable can occur in [15]. k column sparse PIPs have a ek+O(k) factor

randomized rounding based approximation algorithm for a fixed k [15].

This implies that even if we assume Γ ≥
∑M

b=1Bb i.e. the constraint (5.16) is

redundant and that αb = 0,∀b each variable xij(t) appears in three constraints: (1)

Per interval curtailment target constraint (5.15), (2) Budget constraint (5.17), and (3)

constraint (5.19). Hence, using the approximation algorithm developed in [15] we can

get a worst case bound of > 8 which is unsatisfactory for reliable grid operations.

Hence, to develop an approximation algorithm with tighter theoretical worst case

bounds, we first make the following assumption: The costs cbj(t) are a function of
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γbj(t) i.e., cbj(t) = f(γbj(t)). We will derive approximation guarantees when the func-

tion f is linear and when it is quadratic. In order to develop a bounded approximation

algorithm, we first relax the ILP to a linear program i.e., we replace Equation 5.20 with

0 ≤ xbj(t) ≤ 1 ∀b, j, t and solve the Linear Program. Solving a linear program takes

polynomial amount of time using methods such as inter-point or ellipsoid [20]. How-

ever, the solution will contain fractional values for the decision variables xbj(t), ∀b, j, t

which need to be rounded to 0 or 1 for a valid solution. Now, naively rounding the

decision variables leads to errors which are unbounded. Hence, we develop Algorithm 7

which is a novel rounding algorithm which guarantees that the constraints are violated

by at most a factor of 2 in the worst case. For each b, t, the algorithm works by com-

puting expected curtailment γ′ =
∑N

j=1 γbj(t)xbj(t) and rounding it to the curtailment

value γbj(t) nearest to it. We have the following two results for this algorithm.

Theorem 8. For a linear cost function f , Algorithm 7 is a (2,2)-factor Minimum Cost

Supply Demand Matching with Fairness Algorithm. The cost of the solution achieved

by Algorithm 7 is at most twice the optimal while the budget and targeted curtailment

constraints (Eqs 5.16 and 5.17) are violated by at most a factor of two.

Theorem 9. For a quadratic cost function f , Algorithm 7 is (4,2)-factor algorithm.

Proof. Let γ′bt =
∑N

j=1 γbj(t)xbj(t) be the curtailment value obtained for node b in time

interval t. Let γibt and γi+1
bt be the curtailment values of strategies between which γ′bt

falls i.e. γibt ≤ γ′bt ≤ γi+1
bt . Now, if γ′bt is rounded up to γi+1

bt , this implies γ′bt ≥

(γibt + γi+1
bt )/2 ≥ γi+1

bt /2. Summing over all values of b, t ensures that Equation 5.16

and the upper bound of Equation 5.17 are violated by at most a factor of 2. Similarly it

can be shown that if the objective function is linear, it will be bounded by a factor of 2

and if it is quadratic, it will be bounded by a factor of 4.
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Now, in order to provide a bound on the constraint violation of Equations 5.15

and 5.18, we note that if γ′bt is rounded up, the bounds are trivially satisfied. How-

ever, if they are rounded down, then guarantee no longer holds. Hence, we make an

assumption that γi+1
bt ≤ (2k − 1)γibt. Using this assumption, we can ensure that in the

worst case γibt ≥ γ′bt/k i.e. the constraint is violated at most by a factor of k.

The analysis above can be used by the grid operator to improve the efficiency of

supply demand matching. The grid operator can setup curtailment configurations (e.g.

load curtailment strategies such as GTR, etc.) such that the difference between two

consecutive curtailment values is not vary large. However, it is not always possible to

control the curtailment configurations. Hence, the grid operator can develop techniques

by noticing that a higher curtailment value can be expected to have less violations for

two reasons: (1) very few values of γ′bt will have γibj = 0 and (2) since a large number

of non-zero curtailment strategies will be selected, several of them will be rounded up

thus reducing the possibility that Equation 5.10 is violated by a large factor. Hence, if

the required curtailment value is small for a curtailment horizon, the grid operator can

reduce the number of nodes which participate in the curtailment horizon.

Note that the above guarantees are worst case guarantees. In practice, the perfor-

mance is significantly better as shown using the experimental results.

5.3 Online Algorithm for Fair Supply Demand Match-

ing

The algorithms discussed in the previous two sections require the availability of the

curtailment prediction data for the entire horizon. However, certain scenarios require

supply demand matching in an online manner. At the beginning of each interval, the
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Algorithm 7: Minimum Cost Supply Demand Matching with Fairness
Input: C(t), γ(t),Γt,∀t,Γ, Bb, αb∀b

1 xbj(t) ∈ X(t)← 0∀b, j, t
2 Relax the ILP to an LP by replacing Equation 5.13 with 0 ≤ xbj(t) ≤ 1 ∀b, j, t
3 Solve LP to obtain solution x∗bj(t)∀b, j, t
4 foreach b, t do
5 γ′ ←

∑N
j=1 γbj(t)x

∗
bj(t)

6 Let γbi(t) ≤ γ′ ≤ γbi+1(t)
7 if (γ′ − γbi(t)) ≥ (γbi+1(t)− γ′) then
8 xbi+1(t)← 1
9 else

10 xbi(t)← 1
11 end
12 end

Output: X(t)∀t, the list of curtailment strategies to be followed by each node in
each interval

data is made available and supply demand matching needs to be performed in a myopic

way.

We develop a greedy online heuristic algorithm (Algorithm 8) for this problem. The

algorithm finds a minimum cost way to achieve the curtailment target Γol = Γt for the

current interval while ensuring that no node curtails more than the budget for the current

interval. The upper limit of the budget for the current interval Bo
b for each node b is

determined by multiplying the ratio of Bb∑T
t=1 Γt

with Γol . The lower bound is simply

αbBb. The upper bound on curtailment Γou is determined by multiplying the ratio of

Γ∑T
t=1 Γt

with Γol . Let γo denote the curtailment matrix and Co denote the cost matrix

with γobj being the curtailment for node b following strategy j and cobj being its cost.

We remove any values γobj which are outside the curtailment budget range from the

curtailment matrix γo. Note that the values Γ,Γt, Bb∀b are unknown for the current

supply demand matching horizon. They can be obtained from some past horizon.
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Algorithm 8: Online Algorithm for Fair Supply Demand Matching
Input: Γol , γ

o, Co,Γ,Γt∀t, Bb, αb∀b
1 Γou ← Γ∑T

t=1 Γt
Γol

2 Bo
b ←

Bb∑T
t=1 Γt

Γol ∀b

3 Compute Co
min, C

o
max, ĉ

o
bj, Ĉ

o
max similar to Algorithm 6 using γo in which

curtailment values outside curtailment budget range are removed.
4 Fill table Θ using equation 6
5 c∗ ← minĉ{ĉ|Γol ≤ Θ(ĉ,M) ≤ Γou}
6 Run Algorithm 5 with (c∗,Θ(c∗,M)) to get Xo

Output: Xo, the list of curtailment strategies

5.4 Supply Demand Matching with Network Con-

straints

The Supply Demand Matching algorithms discussed in Section 5.1 and 5.2 are agnostic

to the underlying network model of the smart grid. This can lead the framework to output

solutions which violate network capacity constraints. In this section, we will develop a

Supply Demand Matching Framework which explicitly models the Smart Grid network

(Section 3.4) and ensures that the solutions output satisfy the constraints imposed by the

capacity limitations of the various components of the Smart Grid.

5.4.1 Transformer Level Supply Demand Matching

Traditional smart grids are not equipped with bi-directional LV Feeders i.e. the feeders

can carry power from the sub-station to the transformers but not in the other direction.

This implies Capf = 0∀f ∈ F . Hence, Supply Demand Matching needs to be per-

formed at each transformer of the Smart Grid. We develop Algorithm 9 for the same.

Algorithm 9 takes as input the time varying cost and curtailment matrices for both

supply and demand nodes, the distributor capacities and the per interval maximum sup-

ply (demand) for each supply (demand) node. In lines 1 and 2, it initializes the decision
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Algorithm 9: Transformer Level Supply Demand Matching Algorithm
Input: Cs(t), Cl(t), γs(t), γl(t) ∀t;Captx ∀tx;Sbs(t) ∀bs ∈ S ∀t;Lbd(t) ∀bd ∈

D, ∀t
1 Xs(t)← 0
2 Xl(t)← 0
3 foreach tx ∈ T do
4 foreach t ∈ {1, . . . , T} do
5 Suptx(t) =

∑
bs∈T (tx)∩S(Sbs(t))

6 Demtx(t) =
∑

bd∈T (tx)∩D(Lbd(t))

7 Γs(t)← max{Suptx(t)− Captx, 0}
8 Γl(t)← Demtx(t)− Suptx(t) + Γs(t)
9 if Γl(t) ≤ 0 then

10 Γs(t)← −Γl(t)
11 Γl(t)← 0

12 end
13 end
14 Γs ← grid operator determined upper bound on solar curtailment.
15 Γl ← grid operator determined upper bound on load curtailment.
16 X tx

s (t)← output of Algorithm 6 with inputs Cs(t), γs(t),Γs(t)∀t,Γs
17 X tx

l (t)← output of Algorithm 6 with inputs Cl(t), γl(t),Γl(t)∀t,Γl
18 Xs(t)← Xs(t) +X tx

s (t)∀t
19 Xl(t)← Xl(t) +X tx

l (t)∀t
20 end

Output: Xs(t), Xl(t) the list of solar and load curtailment strategies for each
node in each interval

matrices to 0. Now, for each transformer tx, in each time interval t (foreach blocks at

lines 3 and 4), it calculates the total solar supply (line 5) and the total demand (line 6).

If the supply is more than the capacity of the distributor, the curtailment target Γs(t)

is set to be the excess supply (line 7). Now, if demand is greater than the total supply

(minus the supply curtailment required to satisfy the distributor capacity constraint), a

demand curtailment target Γl(t) is identified (line 8). The If block starting at line 9 han-

dles the cases where supply is more than the demand. In such a scenario, the supply

should be curtailed for supply demand matching. Algorithm 6 is then used to determine

the per interval load and supply curtailment strategies for each node (lines 16 and 17).
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The upper bounds as required by Algorithm 6 can be determined by the grid operator

(lines 14 and 15). Note that in the interest of simplicity, we make an assumption that

only the required amount of curtailment is performed and any unnecessary curtailment

is avoided. For example, for a transformer, with solar surplus, if a lower cost solution

can be found by performing both load and solar curtailment, it is not considered. Our

algorithm can easily be extended to handle the cases where the assumption is not true.

Theorem 10. Algorithm 9 is a polynomial time algorithm for transformer level mini-

mum cost supply demand matching with network constraints which in the worst case

violates the distributor constraints (Equation 3.3) by at most (1− ε) factor.

Proof. In each transformer, Algorithm 6 is being called with Captx as the curtailment

target. As Algorithm 6 is a polynomial time algorithm which produces a solution of

minimum cost while violating the curtailment target by at most (1 − ε), so does Algo-

rithm 9.

5.4.2 Smart Grid Level Supply Demand Matching

The increased distributed generation in future smart grids will lead to a more active

participation by the consumers and will required bi-directional power exchanges [29]

using LV-feeders. This implies that the maximum power that can be injected from the

transformers i.e. Capf ≥ 0. This will allow us to perform more cost efficient supply

demand matching by optimally distributing the supply from surplus transformers to the

deficit ones.

We develop Algorithm 10 to perform smart grid level supply demand matching at

any given time interval t. The brief description of Algorithm 10 is as follows: For

each transformer, the algorithm first checks whether the solar generation from the nodes

attached is within its capacity or not. If not, then the nodes are marked for the required
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curtailment. Now, in the resulting grid (the grid in which the nodes have performed the

required curtailment), the algorithm partitions the feeders into two sets: one with supply

surplus (Ssup) and one with load surplus (Sdem). For each set, the minimum costs of

performing all possible curtailments are identified. Finally, the algorithm chooses sup-

ply and load curtailments such that the cost is minimized and the total supply after solar

curtailment equals the total demand after load curtailment. Unlike the transformer level

supply demand matching in Section 5.4.1, which distributes curtailment temporally to

minimize costs, this algorithm performs spatial curtailment distribution in each interval

separately.

We define additional notations γsf (t), γdf (t), Csf (t), Cdf (t), Xsf (t), Xdf (t) denoting

the sub-matrices of the original matrices defined in Section 3.4 corresponding to supply

(s) or demand (d) nodes attached to feeder f for the given time interval t. Let Γmin =

mins,d,f{Γminsf (t),Γdf (t)}, where Γminsf (t) and Γdf (t) are defined in lines 8 and 11 of

Algorithm 10. Also let Fmax = maxf{|F(f)|} Define µ = εΓmin
Fmax

. We define γ̂sf (t) =

dγsf (t)e, γ̂df (t) = dγdf (t)e. We refer to these values as rounded curtailment values.

Similarly, we define γ̂minsf (t), γ̂maxsf (t). For each feeder f , we define a function Θf :

Z+ ∪ {0} × {1, . . . , |F(f)|}, where |A| outputs the size of the set A. Θf (γ̂, b) denotes

the minimum cost required to achieve a curtailment value of γ̂ using nodes 1, . . . , b

where b ∈ {1, . . . , |F(f)|}. To avoid redundancy in notations, if Θf is used to denote

supply curtailment, any load consuming node b is assumed to have 0 supply curtailment

strategies. Θf can be defined recursively as:
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Θf (γ̂, b) =



minj cbj(t) if b = 1 and ∃j | γ̂ = γ̂bj(t)

∞ if b = 1 and γ̂! = γ̂bj(t) ∀j

∞ if γ̂ < 0

minj{Θf (γ̂ − γ̂bj(t), b− 1) + cbj(t)} otherwise

(5.21)

Note that this is similar to the dynamic program of Equation 5.6 and hence Algo-

rithm 5 can be used to determine the strategies to be followed by each node connected

to the feeder f . For each f , if f ∈ Ssup, we define Sf = {(Θf (γ̂,M), γ̂)|Γ̂minsf (t) ≤

γ̂ ≤ Γ̂maxsf (t)}, where Γ̂maxsf (t), Γ̂minsf (t) are defined in line 11. The minimum curtail-

ment requirement ensures that the feeder capacity constraints are met. If f ∈ Sdem, then

Sf = {(Θf (γ̂,M), γ̂)|Γ̂df (t) ≥ γ̂}.

Now, we create two dynamic programming tables Φsup and Φdem using the sets

Sf∀f ∈ Ssup and Sf∀f ∈ Sdem respectively. The tables are built using functions

Φsup : Z+ ∪ {0} × {1, . . . , |Ssup|} and Φdem : Z+ ∪ {0} × {1, . . . , |Sdem|}. The func-

tions Φsup(γ̂, f) denotes the minimum cost required to achieve the curtailment value of γ̂

using supply nodes from feeders {1, . . . , f} and is defined using the recursive function:

Φsup(γ̂, f) =



minj cj if f = 1 and ∃j | γ̂ = γ̂j, (cj, γ̂j) ∈ Sf

∞ if f = 1 and γ̂! = γ̂j ∀j | (cj, γ̂j) ∈ Sf

∞ if γ̂ < 0

minj | (cj ,γ̂j)∈Sf{Φ(γ̂ − γ̂j, f − 1) + cj} otherwise

(5.22)
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Φdem(γ̂, f) is defined similarly. Leveraging the tables built using Equations 5.21

and 5.22, Algorithm 10 performs minimum cost smart grid level supply demand match-

ing. Ŝ and D̂ used in equation 19 are the rounded aggregated solar and load surplus

in the Smart Grid respectively. A detailed line by line description of Algorithm 10 is

provided later in Section 20. We have the following theorem.

Theorem 11. Algorithm 10 is a polynomial time algorithm for smart grid level minimum

cost supply demand matching with network constraints which in the worst case violates

the feeder and distributor constraints (Equations 3.3 and 3.6) by at most (1− ε) factor.

Moreover, the curtailment achieved by Algorithm 10 is within (1 ± 2ε) factor of the

optimal curtailment target which can mitigate the supply demand mismatch.

Proof. Correctness of the algorithm can be proved using induction, hence we exclude

the details.

Runtime: The dominating term in the runtime complexity will be the creation

of the Φdem and Φsup tables. Each of these tables will require creation of Θ tables

requiring O(M2N Γ̂), by assuming that |F| = O(M) i.e. the number of nodes and

maxf{|F(f)|} = O(M) and Γ = maxs,d,f{Γmaxsf , γdf (t)×M}. This is equal toO(M
4N
ε

)

with the assumptions that Fmax = O(M) and Γ = O(MΓmin). The creation of Φdem

and Φsup tables after creating the Θ tables will require O(M Γ̂2) = O(M
5

ε2
). Hence, the

algorithm is polynomial in the input size and 1
ε
.

The assumption Γ = O(MΓmin) implicitly implies that no transformer level

load/solar curtailment value is ”too small”. If this is not true, we can isolate the trans-

former with the smallest curtailment target and solve it independently. We can repeat the

process until the condition is satisfied. This will lead to a possibly higher cost solution

but will significantly reduce the computation time required.

Approximation Guarantee: Let Γ̂x =
∑

i γ̂i be the rounded curtailment values

selected from the nodes connected to a transformer. Now, we know that Γ̂cap ≤ Γ̂x,
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where Γ̂cap is the minimum curtailment required to satisfy capacity constraints (as deter-

mined in Equations 8 and 11). So, Γcap
µ
≤

∑
i(
γi
µ

+ 1) ≤
∑

i
γi
µ

+ Fmax, where Γcap and

γi are the unrounded curtailment values. This implies Γcap − εΓmin ≤ Γx =⇒ Γx ≥

(1 − ε)Γcap, where again Γx is the unrounded curtailment value. Hence, the capacity

constraints are violated by a maximum factor of (1− ε).

Now, in order to prove the second part of the theorem, without loss of generality,

let supply be surplus in the Smart Grid. Let Ŝ be the aggregate supply and D̂. Let

Γ̂sx =
∑

i γ̂si be the solar curtailment values chosen and let Γ̂dx =
∑

i γ̂di be the chosen

load curtailment values. Let Γ = S − D be the required unrounded curtailment value

and let Γx = γsx − γdx be the achieved unrounded curtailment value. Now, we know

Ŝ − γ̂sx = D̂ − γ̂dx. By rearranging and unrounding, we can get 1: S + γdx ≤ D +

γsx + µ + µM and 2: D + γsx ≤ S + γdx + µ + µM . Using 1, by substitution, we get

Γ− εΓmin(1 + 1
M

) ≤ Γx =⇒ Γ(1− 2ε) ≤ Γx as M ≥ 1. Using 2, by substitution, we

get Γx ≤ Γ + ε(1 + 1
M

)Γmin =⇒ Γ(1 + 2ε) as M ≥ 1. So, the curtailment achieved

by Algorithm 10 is within (1± 2ε) factor of the optimal curtailment.

Algorithm 10 Description

Algorithm 10 takes as input the cost Cs, Cl and curtailment γs, γl matrices for all the

supply and demand nodes, the capacity of each distributor Captx and each feeder Capf

and the maximum supply Sbs and maximum demand Lbd for each supply or demand

node respectively. It then initializes two empty sets (line 1). Ssup denotes the feeders

where the maximum possible supply is greater than the maximum possible demand and

Sdem are the feeders with maximum possible demand greater than supply. The decision

variables are all set to 0. For each feeder (for each block starting at line 2), the algo-

rithm calculates the maximum possible supply and demand (lines 3 and 4). In line 5,

the algorithm identifies the minimum supply curtailment required to meet the distributor
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Algorithm 10: Smart Grid Level Supply Demand Matching Algorithm for time
interval t

Input: Cs(t), Cl(t), γs(t), γl(t);Captx ∀tx;Capf ∀f ;Sbs(t) ∀bs ∈
S;Lbd(t) ∀bd ∈ D

1 Ssup ← φ; Sdem ← φ; Xsf (t)← 0;∀s ∈ F(f) ∩ S,∀f ;
Xdf (t)← 0;∀d ∈ F(f) ∩ D,∀f

2 foreach f ∈ F do
3 Supf (t) =

∑
bs∈F(f)∩S(Sbs(t))

4 Demf (t) =
∑

bd∈F(f)∩D(Lbd(t))

5 Γsf (t)← max{Supf (t)− CapFtx(f), 0}
6 if Demf (t) ≥ Supf (t)− Γsf (t) then
7 Sdem ← f
8 Γdf (t)← Demf (t)− Supf (t) + Γsf (t)

9 else
10 Ssup ← f
11 Γmaxsf (t)← Supf (t)−Demf (t);

Γminsf (t)← max{Supf (t)− Capf ,Γsf (t), 0}
12 end
13 end
14 foreach f ∈ Sdem do
15 Xsf (t)← output of MinCB with inputs Csf (t), γsf (t),Γsf (t),Γsf (t)
16 Create Φdem using Equations 5.21 and 5.22, Let Sdemf be the sets created

after Equation 5.21
17 end
18 foreach f ∈ Ssup do
19 Create Φsup using Equations 5.21 and 5.22, Let Ssupf be the sets created after

Equation 5.21
20 end
21 Φ(γ̂)← Φsup(Ŝ − D̂ + γ̂, |Ssup|) + Φdem(γ̂, |Sdem|) ∀γ̂ ≥ 0
22 Call Algorithm 11 to get Xsf (t), Xdf (t)

Output: Xsf (t), Xdf (t) the list of curtailment strategies for each node in the
interval t.

constraints. Then, in the if-then-else block starting at line 6, if the maximum demand

in a feeder is greater than the supply (after curtailment required for satisfying distrib-

utor constraints), the feeder is inserted into Sdem and a maximum demand curtailment

target is identified to ensure a feasible supply demand matching configuration. Other-

wise, the feeder is inserted into Ssup and a minimum and maximum supply curtailment
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Algorithm 11: Finding node strategy pairs from Φ

Input: Φ
1 γ̂cur ← argminγ̂{Φ(γ̂)}
2 for f = |Ssup| to 1 do
3 if f 6= 1 then
4 j ← argmin{j | (cj ,γ̂j)∈Ssupf}{Φsup(γ̂cur − γ̂j, f − 1) + cj}
5 else
6 j ← j | γ̂ = γ̂j, (cj, γ̂j) ∈ Ssupf
7 end
8 Run Algorithm 5 with (cj, γ̂j) over Θf to get Xsf (t)
9 γ̂cur ← γ̂cur − γ̂j

10 end
11 γ̂cur ← argminγ̂{Φ(γ̂)}
12 for f = |Sdem| to 1 do
13 if f 6= 1 then
14 j ← argmin{j | (cj ,γ̂j)∈Sdemf}{Φdem(γ̂cur − γ̂j, f − 1) + cj}
15 else
16 j ← j | γ̂ = γ̂j, (cj, γ̂j) ∈ Sdemf
17 end
18 Run Algorithm 5 with (cj, γ̂j) over Θf to get Xdf (t)
19 γ̂cur ← γ̂cur − γ̂j
20 end

Output: Xsf (t), Xdf (t) the list of curtailment strategies for each node in the
interval t.

is identified. The minimum supply curtailment is required for satisfying the feeder and

distributor constraints while the maximum denotes the curtailment after which supply

demand matching is not possible due to less supply. In the foreach blocks (lines 14

and 18), sets Sdemf and Ssupf are created by filling dynamic programming tables Φdem

and Φsup respectively. Additionally, for the demand surplus feeders, any supply curtail-

ment required to meet the distributor constraints is performed using Algorithm 5 (with

time horizon of just 1 interval). Now, in line 21, for each valid rounded demand curtail-

ment γ̂, the cost of operation is calculated. Cost of operation is the sum of γ̂ demand

curtailment and Ŝ − (D̂ − γ̂) supply curtailment. The latter curtailment is required

to match supply with demand. Here, Ŝ and D̂ are the rounded aggregate maximum
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solar and demand surplus in the smartgrid respectively. These are the values which

are available to perform smart grid level supply demand matching while ensuring that

within each feeder, the distributor and feeder constraints are satisfied and feasible sup-

ply demand matching configurations are maintained. Now it calls Algorithm 11 which

in lines 1 to 20, using the value of γ̂ identified to ensure minimum cost, the dynamic

programming tables are traversed to find suitable strategies for each node in each feeder

and the corresponding decision variables are set. As the tables Θf are similar to the Θ

table filled in Algorithm 6, Algorithm 5 is used to traverse the same.

5.5 Modeling Storage for Supply Demand Matching

Algorithms

Operational states of energy storage systems are continuous in nature as opposed to

the discrete operational states of supply and demand nodes considered in the work. It

is trivial to incorporate storage in the Integer Linear Program based algorithm of Sec-

tion 5.2 by adding continuous variables denoting storage charge/discharge and convert-

ing it into a Mixed Integer Linear Program (MILP). However, incorporating storage into

algorithms developed in Section 5.1, Section 5.4.1 and Section 5.4.2 requires us to dis-

cretize the charge/discharge parameter in such a way that the runtime is not affected.

In order to incorporate storage in dynamic programming based approximation algo-

rithms, we define R̂ = dR
µ
e, Ĝ = dG

µ
e and D̂ = dD

µ
e. For each interval t, we define

the charging strategies of storage as Ĝt = {0, 1, . . . , Ĝ} and discharging strategies as

D̂t = {0, 1, . . . , D̂}. Using these variables, the storage operation can be defined as

R̂t+1 = R̂t + ηGĜt −
1

ηD
D̂t (5.23)

99



and the constraints are defined as follows:

µT
1

ηD
≤ R̂t+1 Discharge Mode (5.24)

R̂t+1 ≤ R̂− µηGT Charge Mode (5.25)

0 ≤ D̂t ≤ D̂ (5.26)

0 ≤ Ĝt ≤ Ĝ (5.27)

Now, if the algorithm chooses D̂t as discharge, min{µD̂t, D} is discharged. Sim-

ilarly, if the algorithm chooses Ĉt as charge, min{µĈt, C} is charged. This ensures

that the maximum charging/discharging constraints are met. Equations 5.24 and 5.25

ensure that the storage operation is always within storage capacity. This is because the

maximum difference between the charge values obtained by our algorithm: µGx and

actual charge: Ga is bounded by µηGT and the discharge range is bounded by µT 1
ηD

.

Moreover, when R̂T ≤ µT 1
ηD

, the storage cannot be used in discharge mode or when

R̂T ≥ R̂− µηGT , it cannot be used in charge mode.

It is evident that this storage model leads to a ηµT amount of storage being unused,

where η = (ηG + 1
ηD

). The value Γmin used to define µ can be modified to provide

an upper bound on the unused storage. For example, if the storage capacity R ≥ 1
k

Γl
M

,

where Γl is the aggregate of minimum curtailment target across all the intervals, then

modifying Γmin to 1
ηk

Γmin will bound the unused storage by µT = ηεΓminT
ηkM

≤ ηεΓl
ηkM
≤

εR. The condition R ≥ 1
k

Γl
M

implies that the storage capacity is at least 1
k

times the

average curtailment produced by a node in an interval to achieve the target Γl. However,

the downside here is that this leads to a (ηk)2 factor increase in the runtime. The typical

charge/discharge efficiency for Li-ion batteries is 80-90% [4], so η ≈ 2.15.

Now, when the algorithms fill the dynamic programming table in Equations 5.6

and 5.21, instead of iterating through N strategies to find the minimum, the algorithm
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iterates through D̂ + 1 strategies if the storage is used for discharging or Ĝ + 1 strate-

gies if it is used for charging. This increases the runtime of filling Θ by a factor of

O( Γ̂
N

). However, the runtime of Algorithm 6 and Algorithm 10 still remain O(T
3M2

ε2
)

and O(M
5

ε2
) respectively.

5.6 Results and Analysis

In addition to providing theoretical guarantees, we perform practical evaluations of the

algorithms developed. We implemented the algorithms using MATLAB [8]. The LP

and ILP algorithms were implemented using IBM ILOG Cplex Optimization Studio [1]

which is a toolkit for mathematical and constraint programming. The experiments were

performed on Dell optiplex with 4-cores and 4 GB RAM. A supply demand matching

horizon of 32 15-min intervals was considered with 16 intervals of load curtailment and

16 intervals of solar curtailment.

We evaluated the algorithms by varying the (L,U) pair where, for notational simplic-

ity, L=
∑T

t=1 Γt and U=Γ (Section 5.2.1). Note that L and U are the lower and upper

bound on the curtailment to be achieved in the curtailment horizon and hence represents

the feasible curtailment range. The costs of the strategies were evaluated using the func-

tion f(γ) = 2γ2, where γ is the curtailment value of the strategy. Section 5.6.1 describes

the input dataset generation. As the dataset was generated from historical data, perfect

knowledge of the future was assumed with no prediction errors.

5.6.1 Dataset

We obtained the load curtailment data from the demand response implementation on our

University Campus. Our campus consists of 150 DR enabled nodes (buildings) each of

which can follow 6 load curtailment strategies. The load curtailment values for each
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node-strategy pair was generated using algorithms mentioned in [12]. We varied the

load curtailment target from 500 to 1500 kWh.

Unlike load curtailment data for which we had a real world dataset, we had to sim-

ulate solar curtailment data. The output of a solar PV is determined mainly by the solar

radiance at the PV installation, the PV area and the PV yield [7]. We used the hourly

solar radiance data available at [5] for the Los Angeles County. We then used the PV-

output calculator available at [7] to calculate the solar generation data by varying the PV

area from 10m2 to 20m2. We also varied the solar panel yield from 5% to 15%. Hence,

a fixed PV area and yield represents a node in our dataset. To obtain solar curtailment

values, if the PV output for a given hour for a node was O, we generated 6 curtailment

values: 0, 0.125∗O, 0.25∗O, 0.5∗O, 0.75∗O,O. Hence, each curtailment value repre-

sents a PV connection/disconnection setting. All the 4 15-min intervals for a given hour

were assigned the same curtailment values. For clarity, given an (L,U) pair, we report

the error of either solar or load curtailment, whichever one performs worse. We used a

precision of 3 decimal places for both load and solar curtailment values.

5.6.2 Minimum Cost Supply Demand Matching

We evaluate our minimum cost supply demand matching (MinCB) Algorithm by vary-

ing the (L,U) pairs as discussed above. For each (L,U) we study the amount by which

the curtailment target constraint (Equation 5.2) is violated. Moreover, we also compare

the cost of the solution obtained by our algorithm to the optimal cost obtained by the

ILP. We also perform a scalability analysis of our algorithm.

Accuracy Analysis

Figures 5.1 and 5.2 show the percentage error of the curtailment target constraint (Equa-

tion 5.2) violation for various values of the theoretical guarantee ε. For example, if
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Figure 5.1: Percentage Error of the curtailment target constraints for ε = 0.5-0.1 (50-10%
Error Guarantee)

ε = 0.05, the algorithm will incur an error of 5% in the worst case. As we can note from

the figures, the errors incurred by our solution are within the theoretical guarantees pro-

vided by the number ε. In practice, the errors are much lower. For ε = 0.5 (50%), the

highest error incurred is 40%. Similarly, for ε = 0.2 (20%), barring a few cases, the

errors are less than 15%.

As evident from Theorem 1, the cost of the solutions obtained from MinCB are

less than or equal to the optimal solution. This is possible because instead of tightly

satisfying the constraint, as the optimal solution does, MinCB tries to find a solution

with a lower cost which possibly violates the constraints by a maximum of ε. Figure 5.3

shows the ratio of the cost of solution obtained by MinCB and the optimal solution
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Figure 5.2: Percentage Error of the curtailment target constraints for ε = 0.05-0.02 (5-2%
Error Guarantee)

versus the approximation guarantee (ε). As we can notice from the figure, for each

curtailment range, the ratio increases as the approximation guarantee is tightened i.e.

reduced. For lower values of ε such as 0.02 (2%), the ratio is close to 1. The ratio is

never greater than 1 implying that the cost of the solution obtained by MinCB is always

less than the optimal cost.

We can also note that for a fixed approximation guarantee (ε), the ratio typically

decreases with an increase in the upper bound U of the curtailment range. This trend is

more pronounced in higher values of ε such as 0.5 (50%) and 0.2 (20%). This is because

a higher value of U provides a larger error range in which to search for minimum cost
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Figure 5.3: Ratio of the cost of solution obtained by MinCB and the optimal solution
versus the approximation guarantee (ε)

solutions. For example, for 50% error guarantee, the error range which is 750 kWh for

U = 1500, is three times larger than the error range of 250 kWh for U = 500.

Scalability Analysis

In order to perform scalability analysis, we fix the values of T : the number of time

intervals and N : the number of curtailment strategies per node. We vary M : the number

of nodes for various values of ε. As one can see from Figure 5.4, the algorithm exhibits

a near quadratic increase in the runtime with respect to the number of nodes. This is

consistent with the runtime complexity analysis.
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We also analyze the scalability with respect to ε by varying the value of M while

keeping T and N fixed. As shown in Figure 5.5, decreasing ε (increasing accuracy) has

a significant impact on runtime. Hence, ε is a parameter that can be used to trade-off

accuracy versus computational complexity.

A reader might comment that the runtimes observed, especially for smaller values

of ε are very high. This can be justified as the problem of supply demand matching

is NP-hard and hence, high computation capacity is required to increase the accuracy.

Our objective in this work is to show that a polynomial time approximation algorithm

exists for this NP-hard problem. We did not focus on finding the best optimal solution

for the same. Moreover, our experiments are performed on MATLAB. For a real world

deployment of this software, using faster programming languages such as C++ will

significantly improve the run times (as high as 10-20 times as per the experience of the

authors). In the context of real world scenarios, the California ISO’s MRTU applications

determine the desired generation changes 5-min ahead of the beginning of the interval

and the system needs to start moving towards the set point 2.5 minutes ahead of the

interval [44]. Given the typical inverter control delays of the order of milliseconds [33],

even our naive MATLAB implementation meets the California ISO constraints for 40

nodes with ε = 0.2 (20% error) and 25 nodes for ε = 0.1 (10% error). Similar imple-

mentation in C++, assuming a conservative estimate of 10x improvement will meet the

constraints for 70 nodes with ε = 0.1 (10% error) and 40 nodes with ε = 0.05 (5%

error).

To further improve the runtime, parallelization techniques can be used as the algo-

rithm is amenable to parallelization trivially. The T Θt tables can be filled in parallel.

Moreover, all the entries corresponding to a node b in Θt and time t in Φ can be filled in

parallel leading to dramatic improvement in the performance.
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We also compare our algorithm against demand curtailment selection techniques

such as those developed in [76] and [34]. We observed that these techniques typically

incur errors (constraint violations) of around 5-20% and in the worst case can go as

high as 95%. We exclude the details of this analysis as comparison against the optimal

solutions obtained by solving the ILP makes this analysis redundant.
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Figure 5.6: Improvement in PV Penetration

5.6.3 Improvement in PV Penetration

We also analyze the improvement that can be achieved in the percentage of PV pene-

tration using our minimum cost supply demand matching (MinCB) algorithm using a

simple analysis. We consider a smart grid with a ratio of average load to minimum load
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as 10 during the day light hours of 10 am to 5 pm. We analyze the solar irradiance time-

series data obtained for the Los Angeles County [5] for the periods of February-May

2010 and July-October 2010 to calculate the normalized mean and standard deviation.

We define PV Penetration Percentage as PVavg×100

Loadavg
, where PVavg is the average supply

from solar and Loadavg is the average load. To calculate PV Penetration Percentage,

we assume that the maximum supply i.e. average supply plus one standard deviation,

minus any curtailment should be less than the minimum load. Moreover, we assume

that the maximum curtailment that can be performed is 1 − ε, where ε is the accuracy

parameter chosen. For example, if ε = 0.5 i.e. 50% then maximum curtailment that can

be performed is 50% of the maximum supply. This is because if the curtailment target

is the entire maximum supply, the algorithm can guarantee only 50% curtailment for

ε = 0.5. As shown in Figure 5.6, in the absence of supply demand matching (net load

balancing) algorithm (labeled No NLB), the maximum PV penetration is around 13%.

This value dramatically increases with the use of supply demand matching framework

and can be as high as ≈ 270%.

The analysis above suggests that by enabling PV curtailment with high accuracy, we

can achieve the following objectives:

• We can ensure that the maximum supply in any time step, assumed to be average

supply plus one standard deviation minus supply curtailment, does not exceed the

minimum possible load value.

• A high PV penetration value can be achieved, thereby, reducing the amount of

supply from external markets during peak demand periods. For example, a PV

penetration value of 270% implies that at any given time step, if the PV is supply-

ing its average value and even if the demand is 2.7 times the average load value,

the PV supply will be enough to meet the demand and no external supply from

the market will be required.
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5.6.4 Minimum Cost Supply Demand Matching with Fairness

In Section 5.6.4, we introduced the notion of fairness by defining curtailment budget

ranges for nodes. Here we evaluate the empirical performance of our minimum cost sup-

ply demand matching with fairness (MinCBF) algorithm. Note that the budget ranges

for each node can be set appropriately by user/grid operator. In our experiments, we set

the budget Bb for each node b to γbmax/
∑B

b=1 γ
b
maxΓ where γbmax denotes the sum of the

maximum curtailment values across all the intervals. We also set αb = α and vary the

value α.
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Figure 5.7: Percentage Error of the Cost of MinCBF w.r.t. the Optimal Cost

In order to evaluate the accuracy of our algorithm, we compare against the optimal

solution obtained by solving the ILP defined in Section 5.2.1. Figure 5.7 shows the

percentage error of the cost of the solution produced by MinCBF as compared against

the optimal cost. Although, the worst case theoretical guarantee is a factor of 4 for

quadratic cost function as provided by Theorem 5.3, in practice the algorithm performs
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much better with errors varying from -0.79% to 1.88%. The negative percentage error

implies that the cost of the solution from our algorithm was less than the cost of the opti-

mal solution. Note that this is possible because our solution violates certain constraints

which the optimal solution does not.

However, the complexity of the ILP prevented CPLEX studio to generate results in

a reasonable amount of time. Hence, we compared the objective value of the rounded

results obtained from our algorithm against the objective value of the LP with fractional

solutions. Since, an LP relaxation of an ILP always produces better objective value

(albeit with infeasible integral solutions), the results shown will only improve if com-

pared against the optimal ILP solution.
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Figure 5.8: Percentage of Budget Overshoot for 10 Worst Affected Nodes

Figure 5.8 shows the percentage of the budget overshot for the top 10 worst affected

nodes across all the values of L and U. The theoretical guarantee of factor 2 (100%)
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Figure 5.9: Percentage Undershoot of Interval Curtailment Target for various intervals
(note: the labels of x axis do not denote the actual interval number)

provided by Theorem 5.2 is honored in all the cases. Moreover, in practice the error is

less than 13% (1.13 factor) for the worst performing node.

Figure 5.9 shows the percentage of the interval curtailment target Γt undershot for

the top 10 worst affected intervals across all the values of L and U. The theoretical

guarantee of factor 2 (100%) provided by Theorem 5.2 is honored in all the cases. As we

can see from the figure, in practice the error is less than 7% (1.07 factor) for the worst

performing interval. This implies that the curtailment target for the worst performing

interval could not be met and was deficit by 7%.

We also calculated the gini coefficient – which is the most commonly used measure

of inequality in economics – of the curtailment achieved by each node as a proportion

of its budget to measure the fairness of curtailment. Figure 5.10 shows the results for

various values of α for a curtailment range of 500-1000 with 20 nodes. The value of
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Figure 5.10: Gini Coefficient for various values of Alpha (α)

gini decreases with increasing α as the dispersion of the curtailment decreases. Above

α = 0.2, no feasible solution could be found.

Mathematically,

G =

∑n
i=1

∑n
j=1 |xi − xj|

2n
∑n

i=1 xi
(5.28)

5.6.5 Online Algorithm for Minimum Cost Supply Demand Match-

ing with Fairness

In order to evaluate our online algorithm for minimum cost supply demand matching

with fairness (Online MinCBF), we compare the cost of the solutions obtained against

the optimal solutions of the ILP defined in Section 5.2.1 as generated in Section 5.6.4.

For various values of L and U pairs, we calculate the percentage error in the cost
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obtained by the online algorithm (Algorithm 8) with respect to the optimal solutions.

The budget values Bb input to Algorithm 8 are same as the ones used in Section 5.6.4.
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Figure 5.11: Percentage Error of the Cost of Online MinCBF w.r.t the Optimal Cost

Figure 5.11 shows the results obtained. Even though we do not provide any guar-

antee on the worst case bounds for the online algorithm, in practice the error incurred

is low. The highest error incurred is around 23% (factor 1.23). This makes the online

algorithm a good candidate for supply demand matching when the predictions for the

entire horizon are not known in advance.

5.6.6 Supply Demand Matching with Network Constraints

We evaluate Algorithms 9 and 10 by considering a smart grid with 10 transformers each

connected to 10 nodes. We consider a single time interval in which 5 of the transformers

have a load surplus and 5 have solar surplus. For each transformer with solar surplus,

we assume that the aggregate load connected is 0.25 times its total solar generation
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Figure 5.12: Ratio of Cost of Algorithm 10 to Algorithm 9 versus Feeder Capacity for
various values of Distributor capacity.

Stx. We set the capacity of distributor for each transformer Captx equal to f1Stx, where

f1 ∈ [0, 1] and vary f1. We set the capacity of the corresponding feeder Capf equal

to f2 × f1Stx, where f2 ∈ [0, 1] and vary f2. Figure 5.12 shows the ratio of the cost

of solution obtained by Algorithm 10 to that of Algorithm 9 versus the feeder capacity,

which is determined by varying f2. Each line in the figure corresponds to a single

distributor capacity as determined by f1.

As evident from the figure, for a fixed distributor capacity, a reduction in the feeder

capacity leads to a reduction in the cost ratio i.e. cost of Algorithm 10 and Algorithm 9

converge with reduction in the feeder capacity until they are equal for a feeder capacity

of 0. Moreover, for a fixed feeder capacity, the gap between the costs reduces with a

reduction in the distributor capacity. This is because reduced distributor capacity results

in lower solar surplus and hence less surplus redistribution. Note that when the distrib-

utor capacity is f1 = 0.25, the costs are equal. This is because whatever solar power
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is being produced in a distributor, it is being consumed by the load (which is equal to

0.25 times the solar generation). Hence, the cost incurred by both the algorithms is for

curtailing loads in the load surplus transformers.

5.6.7 Storage Modeling

We also evaluate the percentage increase in runtime due to incorporation of storage

nodes into our algorithm. We fix the curtailment range as (667,1000) kWh and the

number of total nodes as 20. We assume an infinitely sized storage with charge/discharge

capacity of 1000 kWh and charge/discharge efficiency of 1 in each time interval. We

then vary the number of storage nodes for various values of percentage errors as denoted

by ε and calculate the percentage increase in runtime compared against a setup in which

no storage nodes are used. Figure 5.13 shows the detailed results. Even for 15 storage

nodes and ε = 0.02 i.e. 2%, the increase in runtime is around 160% i.e. the increased

runtime is less than 2.6 times the runtime of the algorithm without any storage nodes.
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Chapter 6

Discrete Supply Demand Matching

Under Prediction Uncertainty

Previous chapters discussed algorithms for performing discrete supply demand match-

ing assuming no errors in prediction data of the operational values of each nodes. How-

ever, in practice predictions are uncertain which can lead to errors in the solutions.

In this chapter, we explicitly model prediction uncertainty and develop approximation

algorithm to perform discrete supply demand matching accounting for the uncertainty.

6.1 Two Stage Stochastic Recourse Model for Discrete

Supply Demand Matching

We consider a model similar to two stage stochastic recourse model [55] to perform dis-

crete supply demand matching while minimizing the expected uncertainty due to errors

in the prediction models. We first define a few notations to supplement our smart grid

model and then delve into the problem formulation and the solution using an approxi-

mation algorithm .

6.1.1 Smart Grid Model

As before, our smart grid consists of Ms supply nodes and Md demand nodes each of

them withN strategies. The horizon of planning consists of T intervals. In each interval
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t ∈ [T ] where, for notational simplicity, [a] denotes the set {1, 2, . . . , a}, the supply node

is (demand node id) can be in exactly one operational state j with a predicted discrete

supply (load) value of γsisj(t)(γ
d
idj

(t)). In this chapter, we consider optimization in a

single interval and hence we drop (t) to simplify notations. Moreover, γsisj(γ
d
idj

) denotes

the actual generation or consumption for state j instead of the curtailment value as done

in the previous chapters. The corresponding utility of the operational state is usisj(u
d
idj

).

We assume that D is the total uncontrollable load in the system. This the minimum load

which needs to be matched and hence we assign no utility to it. We use the 0-1 matrix

Xs(Xd) to represent the decision variables in which xsisj(x
d
idj

) is set to 1 if node is(id)

is in operational state j and 0 otherwise.

6.1.2 Supply Demand Matching without Prediction Uncertainty

The grid operator needs to ensure that in any given interval, the total supply in the grid is

equal to the total demand while maximizing the utility. This problem can be formulated

using the following Integer Program (IP):

max
Xs,Xd

U(Xs, Xd) =
Ms∑
is=1

∑
j∈[N ]

usisjx
s
isj +

Md∑
id=1

∑
j∈Oid

udidjx
d
idj

(6.1)

s.t.
Ms∑
is=1

∑
j∈Ois

γsisjx
s
isj =

Md∑
id=1

∑
j∈Oid

γdidjx
d
idj

+D (6.2)

∑
j∈[N ]

xsisj = 1 ∀is (6.3)

∑
j∈[N ]

xdidj = 1 ∀id (6.4)
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In the above formulation, Equation 6.2 ensures that supply and demand are matched.

Equations 6.3 and 6.4 ensure that a node is in exactly one operational state. We assume

that the IP is always feasible.

6.1.3 Incorporating Prediction Uncertainty in Supply Demand

Matching

To model the prediction uncertainty, each discrete supply (load) value is associated with

a random variable δsisj(δ
d
idj

), which denotes the error in prediction i.e. the actual real-

time supply (load) value is γsisj + δsisj(γ
d
idj

+ δdidj).

The incorporation of the random parameters into our problem coverts the determin-

istic problem of Section 6.1.2 into a stochastic one. We employ two state recourse

stochastic programming model to make decisions under uncertainty [55]. In a two stage

recourse model, a first stage decision is made and a (higher cost) recourse action is

taken in second stage after the realizations of the random variables based on the first

state decisions. Hence, the first stage decision needs to be made with two objectives:

1) Maximize the utility of implementing first stage decisions, and 2) minimize the cost

associated with any recourse action taken in the second stage for all possible realizations

of the random variables.

We define a scenario as a possible realization of all the random variables. Let S

denote the set of all possible realizations. Let K = |S| denote the number of scenarios.

For a random variable δsisj(δ
d
idj

), let δsiisj(δ
di
idj

) denote the realized value under scenario

i ∈ S . Let pi be the probability of the realization of scenario i. For a first stage deci-

sion X∗s, X∗d obtained by solving the optimization problem (6.1), the realization of a

scenario i can lead to violation of the constraint 6.2 i.e. a imbalance between supply

and demand can occur. The aggregate net load imbalance (load minus supply) is given

using:
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vi(X∗s, X∗d) =

Md∑
id=1

∑
j∈Oid

δdiidjx
∗d
idj
−

Ms∑
is=1

∑
j∈Ois

δgiigjx
∗g
igj

(6.5)

Hence, in the second stage vi(X∗s, X∗d) amount of supply needs to injected into the

grid (or load increased if negative). We assume this is achieved using battery storage.

We assume the cost of the recourse action is given using q(vi(X∗s, X∗d)) or simply

q(vi).

We can formulate the two stage recourse model for supply demand matching as the

following bi-criteria optimization:

2-Stage Recourse (2-SR):

max
Xs,Xd

{U(Xs, Xd)}, min
Xs,Xd

{
K∑
i=1

piq(|vi|)} (6.6)

s.t. vi =

Md∑
id=1

∑
j∈[N ]

δdiidjx
d
idj
−

Ms∑
is=1

∑
j∈[N ]

δsiisjx
s
isj ∀i = 1, . . . , K (6.7)

(6.2)− (6.4)

The objective of the two stage recourse model is to maximize the utility of the deci-

sions taken in stage one and minimize the expected value of the cost incurred due to

recourse action.

There are two significant challenges in efficiency solving 2-SR: 1) The decision vari-

ables Xs, Xd are discrete binary variables. As this problem is an NP-hard problem, no

algorithm can exist which has a polynomial complexity runtime in the input parameters

and which provides the optimal solution unless P == NP, and 2) the value K can be very

large making the algorithm definition itself vary large. The algorithms developed in the

next section address both the challenges. The first challenge is addressed by developing
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an approximation algorithm which in polynomial time outputs a solution whose value,

even in the worst case scenario, is ”close” to the optimal solution. The second challenge

is addressed by making certain assumptions on the randomness of the scenarios.

6.2 Approximation Algorithms for Supply Demand

Matching Under Prediction Uncertainty

We consider two models for the realization of the random variables and develop approx-

imation algorithms for the same.

6.2.1 Latent State Model

This model assumes the existence of a set of latent states H. Each latent state hi ∈

H is realized with a probability pi and is responsible for the realization of scenario

i ∈ S. In other words, all the random load and generation variables are observations

corresponding to these latent states.

Now, the number of latent states can be infinite. However, using the expectation

value E[δsisj](E[δdidj]) for each random variable δsisj(δ
d
idj

), we can reformulate the 2-SR

optimization problem. Assuming a linear cost function q, Equation 6.6 can be written

as:

max
Xs,Xd

{U(Xs, Xd)}, min
Xs,Xd

{
K∑
i=1

pi(|
Md∑
id=1

∑
j∈[N ]

q(δdiidj)x
d
idj
−

Ns∑
is=1

∑
j∈[N ]

q(δsiisj)x
s
isj|)} (6.8)
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switching the summation order and moving the probability p inside the cost function

we get:

max
Xs,Xd

{U(Xg, Xd)}, min
Xs,Xd

{|
Nd∑
id=1

∑
j∈[N ]

q(
K∑
i=1

piδdiidj)x
d
idj
−

Ns∑
is=1

∑
j∈[N ]

q(
K∑
i=1

piδsiisj)x
s
isj|}

(6.9)

Replacing the terms
∑
piδi with the expected value and ignoring K, we have the

following formulation:

2-Stage Recourse for Latent state model (2-SRL):

max
Xs,Xd

{U(Xs, Xd)}, min
Xs,Xd

{Q(Xs, Xd)} (6.10)

s.t.(6.2)− (6.4)

where Q(Xs, Xd) = |
∑Md

id=1

∑
j∈[N ] q(E[δdidj])x

d
idj
−

∑Mg

is=1

∑
j∈[N ] q(E[δsisj])x

s
isj|.

To simplify notations, the expected cost for node is (id) with operational state j:

q(E[δsisj]) (q(E[δdidj])) will be denoted using q̃sisj (q̃didj).

6.2.2 Approximation Algorithm for 2-SRL

In order to develop an approximation algorithm for 2-SRL, 2-SRL-Approx, we will cre-

ate two dynamic programs, one for the generation nodes and one for the demand nodes.

For each possible generation (demand) value, utility value and uncertainty value triplet,

the dynamic program will return true or false denoting whether it is possible to achieve

the triplet using all the generation (demand) nodes or not. Using the approximation

technique of rounding, we will ensure that the size and the runtime complexity of the

dynamic program (and hence the algorithm) is polynomial in the input size and 1
ε
, where
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ε is the accuracy parameter. However, this will lead to a loss in accuracy which we will

prove that in the worst case is bounded by ε.

We will discuss the dynamic program for the demand nodes. The dynamic program

for the generation nodes can be developed analogously. Let t be number such that

q̃′
d

idj
= q̃didj + t > 0 ∀id, j. We refer to q̃′ as translated uncertainty values. As this

translation translates the objective function by a constant amount, it does not affect the

optimization problem. Let Γmax a bound on the maximum possible demand or supply

value, umax be a bound on the maximum possible utility value and q̃′max be a bound

on the maximum possible translated uncertainty value that can be achieved using all the

demand nodes. Also, let Γmin, umin, q̃′min be the minimum possible values greater than

zero. We assume the quantities Γmax
Γmin

, umax
umin

and q̃′max
q̃′min

to be bounded by polynomial in

the input size and 1
ε
. Let M = max{Ms,Md}We create the following partitions:

[0], [Γmin,Γmin(1 + ε)
1
M ), [Γmin(1 + ε)

1
M ,Γmin(1 + ε)

2
M ), . . . , [Γmin(1 + ε)

kd−1

M ,Γmin(1 + ε)
kd
M )

[0], [umin, umin(1 + ε)
1
M ), [umin(1 + ε)

1
M , umin(1 + ε)

2
M ), . . . , [umin(1 + ε)

kd−1

M , umin(1 + ε)
ku
M )

[0], [q̃′min, q̃
′
min(1 + ε)

1
M ), [q̃′min(1 + ε)

1
M , q̃′min(1 + ε)

2
M ), . . . , [q̃′min(1 + ε)

kd−1

M , q̃′min(1 + ε)
kq
M )

where kd = dM log1+ε(
Γmax
Γmin

)e, ku = dM log1+ε(
umax
umin

)e and kq =

dM log1+ε(
q̃′max
q̃′min

)e. The intervals in the partitions are indexed using γ̂ ∈

{0,Γmin, . . . ,Γmin(1 + ε)
kd−1

M } , û ∈ {0, umin, . . . , umin(1 + ε)
ku−1
M } and

0, q̃′min, . . . , q̃
′
min(1 + ε)

kq−1

M respectively, i.e. the lowest value of the intervals. Without

loss of generality, we assume that the demand nodes are ordered as 1, 2, . . . ,Md. We

now define a dynamic programming function Φd(γ̂, û, q̂′, id) which returns true (1) if

there exists a triplet γ, u, q′ such that each element γ, u and q′ of the triplet belongs to
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the intervals indexed by γ̂, û and q̂′, respectively and the triplet values can be achieved

using demand nodes 1, . . . , id. The function can be defined recursively as follows:

Φd(γ̂, û, q̂
′, id) =



1 if id = 1 and ∃j ∈ Oid | γidj ∈ γ̂, uidj ∈ û, q̃idj ∈ q̂′

1 if ∃γ̂−, û−, q̂′−, j ∈ Oid | Φd(γ̂
−, û−, q̂′−, id − 1) = 1 and

γidj + γ̂− ∈ γ̂, uidj + û− ∈ û, q̃idj + q̂′− ∈ q̂′

0 otherwise

(6.11)

Now, all the 1 entries in Φd(γ̂, û, q̂
′,Md) denote the feasible γ̂, û, q̂′ triplet for

demand nodes. We can obtain similar triplet for the generation nodes. To distinguish

them, we use the notations γ̂d, ûd, q̂′d and γ̂g, ûg, q̂
′
g for demand and generation nodes

respectively. We define a function Θ(γ̂) which outputs a list of the utility and the asso-

ciated uncertainty for each value of γ̂. Θ can be populated using Algorithm 12 . Θ is

used to determine the dominating solutions using Algorithm 13. A simple dynamic pro-

gramming table traversal algorithm can then be used to determine the operational states

to be followed by each node for any given dominating solution from the pareto frontier.

We have the following theorem for 2-SRL-Approx.

Theorem 12. 2-SRL-Approx is an algorithm with runtime complexity polynomial in the

input size and 1
ε
, where ε is an accuracy parameter, that produces a pareto frontier for

discrete supply demand matching with uncertainty such that for each pareto solution,

the utility is within (1 − ε) of the corresponding solution, and the maximum supply

demand mismatch is within ε factor of both actual supply and demand. Additionally, the

uncertainty associated with either supply or demand are within (1 + ε) of the optimal

supply or demand uncertainty.
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Algorithm 12: Populating Θ using Φd and Φs

Input: Φd,Φs, γ̂
1 foreach γ̂ do
2 Ld ← all ûd, q̂′d s.t. Φd(γ̂, ûd, q̂

′
d,Md) = 1

3 Ls ← all ûs, q̂′s s.t. Φs(γ̂, ûs, q̂
′
s,Ms) = 1

4 Lγ̂ ← φ
5 foreach ûd, q̂′d ∈ Ld do
6 foreach ûs, q̂′s ∈ Ls do
7 Lγ̂ ← Lγ̂ ∪ (ûd + ûs, |q̂′d − q̂′s|)
8 end
9 end

10 Θ(γ̂)← Lγ̂
11 end

Output: Θ

Proof. Correctness: We will prove the correctness of the algorithm in two steps. In

step 1, we will prove that the dynamic program runs correctly to fill Φ (Φd and Φs) and

step 2, we will prove that if the dynamic program runs on actual values instead of the

partition indices and an actual value can be achieved, then this information is not missed

in dynamic program run on partition indices.

We will prove step 1 using induction. Essentially, we need to prove that

Φ(γ̂, û, q̂′, i) = 1 iff it is possible to achieve γ̂, û, q̂′ using first i nodes. For

i = 1, it is true trivially, as we will set Φ(γ̂, û, q̂′, 1) = 1 iff there exists a j in

[N ] such that γidj ∈ γ̂, uidj ∈ û, q̃idj ∈ q̂′. Let the inductive hypothesis be true for

i = k. For k + 1, Φ(γ̂, û, q̂′, k + 1) = 1 if and only if Φ(γ̂, û, q̂′, k) = 1 and

γij + γ̂− ∈ γ̂, uij + û− ∈ û, q̃ij + q̂′− ∈ q̂′. So, if Φ(γ̂, û, q̂′, k + 1) = 1, we can

achieve γ̂, û, q̂′ by achieving γ̂−, û−, q̂′ using k nodes and γij, uij, q̃ij by following jth

operational state of (k + 1)st node. If no such j exists or Φ(γ̂, û, q̂′, k) = 0, it cannot

be achieved.

To proves step 2, we show that if using k nodes, an actual value of γa =
∑k

i=1 γi

(proof is analogous for u and q̃) can be achieved, then γ̂ ≤
∑k

i=1 γi < (1 + ε)
k
M γ̂
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Algorithm 13: Algorithm to generate dominating solutions using Θ

Input: Θ
1 L← all û, q̂′ s.t. Θ(γ̂) 6= φ ∀γ̂
2 Sort L in descending order using û as key, if multiple entries have û, keep the one

with lowest q̂′ and remove all other entries
3 Let L0 be the entry with largest û and LK be the entry with smallest û
4 D ← L0

5 for i = 1 to K do
6 û, q̂′ ← Li
7 foreach ûl, q̂′l ← l ∈ D do
8 if q̂′ ≥ q̂′l then
9 break from for each loop

10 end
11 end
12 D ← D ∪ Li
13 end

Output: D: set of dominating solutions

and some entries Φ(γ̂ : (1 + ε)
k
M γ̂, :, :, k) will be set to 1. We again use induction.

For k = 1, if γ ∈ γ̂ can be achieved then some entries of Φ(γ̂, :, :, 1) are true and

γ̂ ≤ γ < (1 + ε)
1
M γ̂. Let the inductive hypothesis be true for k′ i.e. if a value of

γ′k =
∑k′

i=1 γi can be achieved by node i exhibiting an operational value of γi, then

some entries of Φ(γ̂′k : (1 + ε)
k′
M γ̂′k, :, :, k

′) are true and γ̂′k ≤
∑k′

i=1 γi < (1 + ε)
k′
M γ̂′k.

For k′+ 1, as per the definition of the dynamic program, the entry where γ̂′k +γk′+1 falls

will be true. So, we just need to show that γ̂k′+1 ≤ γk′+1 =
∑k′+1

i=1 γi < (1 + ε)
k′
M γ̂k′+1.

We know the following: (1) γ̂k′+1 ≤ γ̂k +γk′+1 < (1 + ε)
1
M γ̂k′+1, and (2)

∑k′

i=1 γi <

(1+ε)
k′
M γ̂′k. So,

∑k′+1
i=1 γi < (1+ε)

k′
M γ̂′k+γk′+1 < (1+ε)

k′
M (γ̂′k+γk′+1) < (1+ε)

k′
M (1+

ε)
1
M γ̂k′+1 < (1 + ε)

k′+1
M γ̂k′+1 as (1 + ε)

k′
M > 1, when ε, k′ > 0.

Runtime: The dynamic programming table has k × kq × ku ×M entries. Each entry

requires k×kq×ku×N time to fill. Hence, the total runtime is k2×k2
q ×k2

u×M ×N .

Since, kd = dM log1+ε(
Γmax
Γmin

)e, ku = dM log1+ε(
umax
umin

)e and kq = dM log1+ε(
q̃′max
q̃′min

)e,

the runtime is polynomial in the input size and 1
ε
.
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Approximation Guarantee: Consider a dominating solution γ̂, û, q̂′. Let u be actual

reward value that can be achieved and belongs to the partition û. It is evident from the

correctness proof above that such a u will always exist. Now, as shown in step 2 of the

correctness proof, û ≤ u < (1 + ε)
k
M û for k nodes. So, for Ms,Md ≤ M nodes this

implies, û > 1
1+ε

u = 1−ε
1−ε2u. Hence, û ≥ (1 − ε)u. Similarly, for uncertainty we can

prove that q̂′ ≤ (1 + ε)q′.

The above proof establishes that Φd and Φs are correct, can be filled in polynomial

time and the solution values are within (1 + ε) of the optimal. Φd and Φs are used

to fill Θ. Since utilities are a simple summation and uncertainty is simple absolute

different, correctness of Θ follows. Algorithm 12 has polynomial time complexity. Now,

ûd ≥ (1 − ε)ud and ûs ≥ (1 − ε)us implies ûd + ûs ≥ (1 − ε)(ud + us). As the final

uncertainty is obtained using subtraction, we cannot provide a guarantee for the same.

Now, consider the supply and demand partition indices γ̂s = γ̂d = γ̂. Let γs and

γd be the actual generation and demand values. γ̂ ≤ γs, γd < (1 + ε)γ̂. So, γs − γd <

(1 + ε)γ̂ − γ̂ ≤ εγ̂ ≤ εγs, εγs. Hence, the mismatch in generation and demand is within

ε factor of both actual generation and consumption.

Discussion on translation of uncertainty and upper bounds Γmax, umax and q̃′max

The uncertainty value q̃ij associated with a node i and operational state j can have a

negative value. Thus it cannot be directly used for indexing the dynamic programming

table Φ. Hence, we add a value t = |min{0,minij{q̃ij}}| to q̃ij for each i, j to pro-

duce q̃′ij which are non-negative. The following relationship holds:
∑M

i=1

∑
j∈[N ] q̃

′
ij =∑M

i=1

∑
j∈[N ] q̃ij + Mt, where Md is the number of generation nodes Ms or demand

nodes Md.
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The values Γmax, umax and q̃′max denote the maximum possible value of supply (or

demand) γ, utility u and translated uncertainty q̃′ respectively. These values have an

impact on the number of entries in the dynamic programming table Φ. In this work, we

set the values as follows: Γmax =
∑M

i=1 maxj∈[N ] γij , umax =
∑M

i=1 maxj∈[N ] uij and

q̃′max =
∑M

i=1 maxj∈[N ] q̃′ij i.e. we take the sum of maximum possible value that each

node can exhibit.

We further make the following assumptions: Γmax = poly(M, 1
ε
,Γmin), umax =

poly(M, 1
ε
, umin) and q̃′max = poly(M, 1

ε
, q̃′min). This assumption implies the the min-

imum possible non zero value exhibited by any node is not ”too small” compared to the

maximum achievable value from all the nodes. For the nodes in a smart grid, this is

reasonable assumption to make.

6.2.3 Black Box Model

We now relax the assumption that all the random load and generation variables are

observations corresponding to a set of latent states. The implication here is that each

random variable potentially has its own state governing its realization and hence the

number of possible scenarios in the system explodes combinatorially. In this case, it is

not even possible to define the problem in polynomial time (due to exponential number

of constraints of the form (6.7)).

Therefore, we consider a black box model to study such a problem. The analysis

here is a minor modification of the analysis performed in [21]. Under this model, we

are given a black box, which can be used to sample scenarios, where each scenario

corresponds to a particular realization of all the random variables. Sampling of a single

scenario is assumed to be anO(1) time complexity operation. We show that by sampling

only polynomial number of scenarios, we can obtain a solution which is within 1+O(ε)

of the optimal solution. This technique is also known as Sample Average Approximation
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(SAA) [59]. The techniques simply drawsK number of scenarios and assumes that each

scenario occurs with a probability of 1
K

to populate the expected values for defining the

problem.

We first define some notations and assumptions. Let the optimal 2-SR formula-

tion, i.e. the 2-SR formulation which considers the exponential number of scenarios be

defined as:

max{U(x)},min{E[v(x)]}

s.t.x ∈ X (6.12)

where X denotes the feasible range of decision variables Xs, Xd, U(x) denotes the

utility for a feasible solution x andE[v(x)] denotes the expected value of the uncertainty

for x. Now, let the 2-SR model under blackbox model i.e. the formulation obtained by

sampling K scenarios, where K is a polynomial in the input size be defined as:

max{Û(x)},min{ 1

K

K∑
i=1

vi(x)}

s.t.x ∈ X (6.13)

We make the following assumptions:

1. Xd = 0 i.e. load is uncontrollable.

2. The feasible range of x ∈ X is such that the predicted supply meets the demand

in the first stage i.e.
∑Ms

is=1

∑
j∈Ois

γsisjx
s
isj = D

3. Let Z∗ be the minimum value of {E[v(x)]}∀x ∈ X . Let x∗ be the minimizer.

We assume: 0 ≤ vi(x) ≤ λZ∗

ε
∀x, i, where λ, ε > 0. This assumption implies
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that the minimum (non zero) amount of storage required in second stage under

any first stage decision with any possible scenario realization is not ”too small”

compared to the maximum amount of storage required in the second stage. Note

that 0 ≤ vi(x) can be achieved by translating all the uncertainty values by a fixed

amount. Also note that Z∗ > 0 as it is a value corresponding to expectation value

of non-negative terms.

Now, we want to study the error introduced due the use of sample mean instead the

expected value: |U(x)− Û(x)| and |E[v(x)]− 1
K

∑K
i=1 v

i(x)| to compare the solutions

(6.12) and (6.13). As U(x) is independent of the realized scenario, U(x) = Û(x). So,

we just focus on |E[v(x)]− 1
K

∑K
i=1 v

i(x)|∀x ∈ X .

For x ∈ X , we define Yi = εvi(x)
λZ∗
∀i. It follows from assumption (3) that Yi ∈ [0, 1].

For notational simplicity we drop x and write the terms as E[v] and 1
K

∑K
i=1 v

i.

6.2.4 Approximation Algorithm for 2-SRB

2-SRB-Approx: In order to develop an approximation algorithm for 2-SRB, we will sam-

ple K = Θ(λ2ε−4 log |X| log 1
δ
) scenarios and calculate the expected values 1

K

∑K
i=1 δ

for all the random variables. We will then use 2-SRL-Approx to generate the dominating

solutions.

Now, as per Chernoff’s Bound [21], Given independent random variables Y1, . . . , YK

with Yi ∈ [0, 1] ∀i, and Y =
∑K

i=1 Yi for every ε > 0:

Pr{|Y − E[Y ]| > εK} ≤ 2e−ε
2K (6.14)
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Now, note that E[Y ] = E[
∑K

i=1 Yi] = εK
λZ∗

E[ 1
K

∑K
i=1 v

i] = εK
λZ∗

E[v]. So,

Pr{|E[v]− 1
K

∑K
i=1 v

i| > εZ∗}

= Pr{|λZ∗
εK

E[Y ]− λZ∗

εK

K∑
i=1

Yi| > εZ∗} (6.15)

= Pr{|E[
K∑
i=1

Yi]−
K∑
i=1

Yi| >
ε2K

λ
} (6.16)

By equation 6.14 and substituting the value of K = Θ(λ2ε−4 log |X| log 1
δ
), this

probability is less than δ
|X| . Taking union bound over all x ∈ X , with probability 1− δ,

∀x ∈ X:

|E[v(x)]− 1

K

K∑
i=1

vi(x)| ≤ εZ∗ (6.17)

Now, let E ′[v(x)] = 1
K

∑K
i=1 v

i(x). Let x′ be the minimizer of E ′[v(x)]. Note that

x′ is not an exact minimizer and the approximation algorithm 2-SRL is used to obtain

x′. Using Equation 6.17 with x∗, we get E ′[v(x∗)] − Z∗ ≤ εZ∗. Similarly, with x′, we

get E[v(x′)] ≤ εZ∗ + E ′[v(x′)]. This implies, E[v(x′)] ≤ εZ∗ + (1 + ε)E ′[v(x∗)] ≤

εZ∗ + (1 + ε)2Z∗. So E[v(x′)] ≤ (1 + ε)(2 + ε)Z∗. As each sampling is assumed to be

an O(1) operation, we have the following theorem

Theorem 13. 2-SRB-Approx, with probability (1 − δ), gives a (1 + ε)(2 + ε)-factor

bound on uncertainty for 2-SRB with runtime polynomial in λ, 1
δ
, 1
ε

and the input size.

6.2.5 Practical Implementation

2-SRL-Approx and 2-SRB-Approx algorithms, while providing both worst case error and

polynomial runtime guarantee might not scale very well for large problem sizes due to

the large dimensionality of the dynamic program table of the order k × kq × ku ×M .
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In this section, we discuss a few techniques to improve the runtime performance of the

algorithm. Note that the filling of the dynamic program table is highly parallelizable, as

for a node, each entry can be filled independently just using the values of the previous

node. However, the large size of the table can quickly fill up the available memory on

the system. This can be addressed using the following techniques:

1. When the entries corresponding to node i is being filled, only the entries corre-

sponding to node i − 1 are needed. Entries for any prior node can be deleted

thereby reducing the size of the table by a factor of M
2

.

2. The algorithm can be used in single mode similar to algorithms developed in

Section 5.1. This will allow us to use the following memory optimizations:

(a) The dimension corresponding to uncertainty can be removed. Instead, each

entry of the table Φ(γ̂, û, i)can now store the minimum possible uncertainty

value that can be achieved by nodes 1, . . . , i at utility û with operational

value γ̂. The subtraction of demand and supply uncertainties to produce the

final uncertainty value does not allow this optimization in dual mode.

(b) The dimension corresponding to operational values can be removed if we

assume that the constraints governing the aggregate operational value from

all the nodes are of one of the following two forms (but not both): (i) the

aggregate operational value is greater than a threshold, (ii) the aggregate

operational value is below some threshold.

More sophisticated techniques for runtime performance improvement is beyond the

scope of this work as our objective is to prove the existence of polynomial runtime com-

plexity approximation algorithm for discrete supply demand matching with prediction

uncertainty and not necessarily the development of a runtime optimized framework.
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6.3 Risk Aware Supply Demand Matching in Smart

Grids with High DER Penetration

We now consider an alternative approach to incorporate prediction uncertainty into deci-

sion making. In this approach, a storage schedule is developed to minimize the expected

values of the cost of the decisions over a horizon. Moreover, the loads and local genera-

tion using DERs such as PVs are assumed to be uncontrollable and storage is assumed to

be the only controllable DER. Moreover, this approach explicitly considers the presence

of an external electricity market which was not considered in the previous models.

6.3.1 Smart Grid Model for Risk Aware Supply Demand Matching

The smart grid that we consider in this approach is defined as a micro grid that best

represents a University or Industrial campus. It is characterized by the presence of sev-

eral load consuming nodes such as buildings, and several producers of non-commercial

scale (cheap) electricity. In this work, we assume that the producers supply electric-

ity to the micro grid using PV installations over the buildings. The micro grid con-

sists of distributed storage with an aggregate capacity R. The storage has a cumulative

charge/discharge capacity of c. We do not model storage specific parameters such as

Depth of Discharge (DoD), efficiency as we assume the presence of a number of dis-

tributed storage systems rather than a single battery system. A centralized controller is

responsible for ensuring smooth grid operations over a decision making horizon defined

over a set of daytime intervals t ∈ {1, . . . , T}. Note that the horizon is defined over

daytime since supply within the micro grid using PVs is only available during that time.

We assume that during the night time, all demand needs to be met using the storage

accumulated during the day. In our framework, the controller responds to per interval
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supply demand mismatch by either procuring/selling electricity from the external mar-

ket or by charging/discharging the storage. For each interval t, a buy action bt needs to

be performed, where bt is the amount of electricity bought from the market (in kWh).

Moreover, a discharge action srt is performed, where srt is the amount of the electricity

discharged from the storage (in kWh). If bt and srt are negative, opposite actions of

selling the electricity or charging the storage, respectively are performed. The action

performed at t is represented using at =< bt, srt >. The cost of buying (selling) elec-

tricity at interval t isCb
t . We do not associate any cost with storage charging/discharging.

We also assume that the set of costs Cb
t , 0 ≤ t ≤ T is known a priori.

6.3.2 Input Data Model

The inputs to our model are the load and generation predictions. As the predictions

are prone to errors, they need to be modeled carefully so that the framework can make

decision accounting for the errors. We assume that at the beginning of each interval

t of the decision making horizon, the controller receives an input data vector Ȳt =<

Dt, Dt+1, . . . , DT >. Here Dt′ = Lt′ − Pt′ , t
′ ∈ {t, . . . , T} denotes the per interval

supply demand mismatch; Lt′ and Pt′ denote the per interval aggregate consumption

and PV generation respectively.

At time t, Dt denotes the actual supply demand mismatch (net load imbalance) as

observed in real time whereas theDt′ , t
′ ∈ {t+1, . . . , T} are random variables denoting

the predicted imbalances. The relation between action at and Dt is Dt = bt + srt. Thus,

if we want to buy excess storage for the future at time t, we can choose bt > Dt.

6.3.3 Tail End Risk

At the end of the decision making horizon, we assume that the minimum amount of

storage required for night time operations is R′. Hence, the tail end event whose risk
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needs to be minimized is the unavailability of storage capacity of more than R′ by the

end of the decision making horizon. Depending upon the severity of the implications of

failing to avoid the risk, the grid operator can associate it with a cost function as follows:

C(RT , R
′) =


0 RT ≥ R′

Crisk otherwise
(6.18)

where RT denotes the storage available after the interval T and Crisk denotes the

cost of not avoiding the risk. Crisk needs to be calculated appropriately to provide the

operator with a choice to meet or not to meet R′ for a given input data. In this work,

we assume that the risk needs to be avoided at all cost and hence Crisk = ∞. We will

extend our framework to handle partial risk tolerance in our future works.

6.3.4 Supply Demand Framework

A high level overview of our supply demand matching framework is shown in Fig-

ure 6.1. A storage capacity of R0 is available at the beginning of the decision making

horizon. In each time interval t, using the most updated input data Ȳt, the framework

makes a decision and outputs action at for buying (selling) from the external market

and discharging (charging) the storage. The action at for each interval is determined by

formulating and solving a Markov Decision Process (MDP) [19] as described in the next

section. MDP is a widely used mathematical framework for solving sequential decision

making problems. At the end of the horizon, the amount of storage available RT should

be ≥ R′.
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Figure 6.1: Supply Demand Matching Framework

6.3.5 Risk Aware Supply Demand Matching Framework

In this section, we discuss the details of the Risk Aware Supply Demand Matching

Framework that we developed to perform minimum cost per interval supply demand

matching using storage and electricity market while ensuring that the tail end risk of the

shortfall of storage is avoided.

Objective

Given the supply demand matching model defined in Section 6.3.1, the objective of

our framework is to minimize the cost of grid operations while ensuring that in each

interval, the power ingress is equal to the power egress and at the end of the horizon, the

minimum storage requirement is met.
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Solution

MDP Formulation For each interval t ∈ {1, . . . , T}, with information Ȳt, we define

the MDP to determine action at using the following parameters:

Decision Epoch The decision epochs – the time intervals during which the MDP

makes decisions – are {t, . . . , T} with T <∞.

States MDP uses the information regarding the current state to make a decision. For

each interval t′ ∈ {t, . . . , T}, we define state st′ =< dt′ , Rt′ >, where dt′ v Dt′ denotes

the predicted net load imbalances. Rt′ , 0 ≤ Rt′ ≤ R denotes the available storage

capacity and is defined as Rt′ = Rt′−1 − srt′ .

Initial and Terminal States The initial state is denoted using a single state st−1 =<

0, Rt−1 >. The terminal states are denoted using sT =< 0, RT > where RT ≥ R. Note

that the net load imbalance for initial and terminal states are zero. This is because the

initial state imbalance is addressed before invoking the current MDP and the terminal

state is outside the decision epoch.

Actions MDP outputs an action from all available actions in the action space for each

time interval after making a decision. The action ensures that the load imbalance for

the interval is mitigated while making sure that the storage charging/discharging con-

straints are satisfied. For a state st′ =< dt′ , Rt′ >, action space contains actions

at′ =< bt′ , srt′ >, t
′ ∈ {t, . . . , T} such that dt′ = bt′ + srt′ , max{Rt′ − R,−c} ≤

srt′ ≤ min{−Rt′ , c} where c denotes the per interval charge/discharge capacity of the

storage system. Only the action a′t for t′ = t i.e., corresponding to the current interval is

executed. The remaining actions are part of the computation framework while solving

the objective function.
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State Transition Probabilities Given state st′ =< dt′ , Rt′ > at time t′, the transition

probability for st′+1 =< dt′+1, Rt′+1 > is as follows:

p(st′+1|st′ , at′) =


0 if Rt′+1 6= Rt′ − srt′

P [dt′+1|Ȳt] otherwise

where P [dt′+1|Ȳt] denotes the probability distribution of dt′+1 v Dt′+1 under input

data Ȳt.

Objective The MDP solves the following objective problem:

minE[
T∑
t′=t

Cb
t′ .bt′ + C(RT , R

′)] (6.19)

subject to the conditions defined above.

MDP Solution

When input data Ȳt is available at the beginning of interval t,the MDP is used to deter-

mine the action at =< bt, srt > which are executed immediately. If the storage capacity

at the beginning of the interval was Rt−1, then the storage capacity at the end of the

interval Rt = Rt−1 − srt. The MDP is solved as detailed below.
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Solving MDP We define the cost to go function at time t′ ∈ {t, . . . , T} as follows:

Jt′(Rt′ , dt′) = Cb
t′ .(dt′ − srt′)+

E[C(RT , R
′) +

T∑
i=t′+1

Cb
i × (Di − sri)|Ȳt] (6.20)

If J∗t′ is the optimal value of the function, then it can be written recursively as:

J∗t′(Rt′ , dt′) = inf
sr∈SR

{Cb
t′ .(dt′ − srt′)+∑

dvDt′+1

P [d|Ȳt]× J∗t′+1(Rt′ − srt′ , d)} (6.21)

where SR = {sr : max{Rt−R,−c} ≤ srt ≤ min{Rt, c}}. The recurrence relation

above implies that at time t′ the best course of action is the one which minimizes the sum

of the cost of operation in the current interval and the expected value of the future cost of

operations. The above recurrence can be solved using standard dynamic programming

techniques. The initial condition for the recurrence relation is as follows:

J∗T+1(RT , 0) =


0 if RT ≥ R′

∞ otherwise
(6.22)

The optimal action at time t can be determined by solving Jt(Rt−1, 0) after setting

up the dynamic program for the MDP. The variables need to be discretized in order to

solve the dynamic program.

Runtime Let [a, b]δ denote the number of discrete entries when the range [a, b]

is discretized using δ units i.e. [a, b]δ = d b−a
δ
e. The total number of entries to
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be filled are: T × [0, R]δ × maxt{[dmint , dmaxt ]δ}, where d
min/max
t denote the min-

imum/maximum value attained by the random variable Dt. Each entry requires

O(|SRδ| × maxt{[dmint , dmaxt ]δ}) time. Hence, the total time complexity is O(T ×

[0, R]δ × |SRδ| ×maxt{[dmint , dmaxt ]δ}2).

6.4 Results and Analysis

6.4.1 2-SR Algorithms

In order to perform practical evaluations, we implemented the algorithms using python.

The experiments were performed on Dell optiplex with 4-cores and 4 GB RAM.

Dataset

We obtained the load curtailment data from the demand response implementation on

our University Campus. We also used the solar dataset as generated in Section 5.6.1.

The costs of the strategies were evaluated using the function f(γ) = 2γ2, where γ is

the curtailment value of the strategy. The uncertainty values were evaluated using the

function f(γ) = 2γ.

Scalability

In order to perform scalability analysis, we calculate the runtime of the algorithm by

varying the number of nodes and the value of ε (denoted as Epsilon in the figures).

We first fixed the value of ε = 0.2 and varied the number of nodes. As shown in

Figure 6.2, the increase in runtime is polynomial (cubic) with an increase in the number

of nodes.
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Figure 6.2: Runtime of 2-SRL-Approx for varying values of nodes for fixed ε = 0.2

We then fix the number of nodes to 20 and vary ε. As shown in Figure 6.3, the

runtime increases significantly with the decrease in ε. However, the increase is still

polynomial in 1
ε
.

The runtimes of the algorithms might seem large at the first look. However, note

that these are calculated using a naive python implementation. For real world scenar-

ios, an implementation in faster programming languages such as C/C++ can lead to

significantly better runtimes. Moreover, several trivial parallelization techniques can be

adopted to get drastic improvement in the runtime.
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Figure 6.3: Runtime of 2-SRL-Approx for varying values of ε for fixed number of nodes
= 20

6.4.2 Risk Aware Supply Demand Matching

We evaluated the framework developed in Section 6.3.5 to qualitatively assess its perfor-

mance in terms of cost minimization and scalability. The framework was implemented

using C++ on Dell Optiplex with 4 cores running at 2 Ghz clock frequency. The frame-

work was run over a decision making horizon of 20 15-intervals (11 am - 4 pm).

Dataset

We used electricity consumption (load) time series data available from USC’s micro-

grid [36]. We selected a subset of buildings such that the average load during peak

periods (1-4 pm) was 90 kWh and during off peak periods was 70 kWh. We assumed
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a storage capacity of 1500 kWh with a charge/discharge rate of 140 kW. The storage

requirement at the end of the horizon was set as 1400 kWh, which is sufficient to supply

off peak average load for 19 hours i.e. outside the decision making horizon. We used

solar irradiance data available at [5] for Los Angeles USC Downtown area to calculate

the solar generation data. We varied the area of solar panels and used PV output cal-

culator [7] to generate three time series solar generation data which were then used to

create three load imbalance time series. The three time series differed in the fraction of

times either load or solar generation was surplus during the decision making horizon.

Figure 6.4 shows the time series data of load and solar generation used to create the

load imbalance data. The three solar time series are as follows: S1) Both load and solar

surplus almost equal number of times, S2) load is surplus most of the time, and S3) solar

generation is surplus most of the time. We assumed additive errors using gaussian distri-

bution with mean µ = 0 and variance σ2 = 5, 10, 20 i.e., Pr[et′|Ȳt] v N (0, (t′−t)×σ2),

such that Dt′ = d̂t′ + et′ , with d̂t′ denoting the actual value of load imbalance.

Optimality

We compare the cost of operation across the entire decision making horizon, i.e. 11

am - 4pm, of our framework against an optimal framework which has the correct data

for the entire horizon in advance. The optimal framework solves a single MDP for

decision epochs {1, . . . , T} using the available correct data. The cost of buying was set

at $0.75/kWh for 11am - 1pm and $0.95/kWh for the remaining horizon. We evaluated

our framework using 6 timeseries data generated i.e. three load imbalance profiles with

two different variance of 10 and 20. We set the initial value of storage to 0 and 750

kWh.

Figure 6.5 shows the relative percentage error of the cost of solutions obtained from

our framework with respect to the optimal algorithm. As we can see from the figure,
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Figure 6.4: Load and Solar Timeseries Data Used for Evaluation

for each pair of initial storage-load imbalance curve, a higher variance leads to slightly

higher errors. This is expected as increasing uncertainty in the input data increases the

errors in decision making. However, note that the error difference is not significant

implying that the framework is able to compensate for the increased uncertainty.

Also, note that the errors increase with the change in the initial storage value. This

is due to the fact that when the initial storage is 0 kWh, the major focus of the frame-

work is to just charge the storage to its final value (1400 kWh) and fulfill the deficit.

However, when the initial storage is 750 kWh, charging requirements are reduced and

the framework tries to focus on participating in the external market operations by selling

the excess energy. The additional actions open up new avenues for the uncertainty in the

input data to introduce errors as manifested in the higher relative percentage errors.
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Figure 6.5: Relative Percentage Error of Framework w.r.t. Optimal Cost For Varying
Initial Storage and Variance

In our future work, we will focus on reducing the errors furthers by using reinforce-

ment learning based techniques which learn from the past experience to improve the

accuracy for the future operations.

Scalability

We perform scalability analysis of the framework by varying the storage capacity and

the variance of the errors. We calculate the time required to make decision at time

period 0 for the entire horizon. For each storage capacity value R, we fix the charge

discharge rate to 0.1 × R. Figure 6.6 shows the time required to make decisions with

respect to the storage capacity R for various values of variance. The increase in runtime

is quadratic in R. This is in agreement with the runtime which is O(R × |SR|), when

other variables are fixed and |SR| = O(R). The increase in runtime with variance is
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Figure 6.6: Time Required for Decision Making w.r.t Storage Capacity for Varying
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significant. However, even for a storage capacity of 1000 kWh and variance of 20, the

runtime is just around 340 seconds.

A few techniques can be followed to further improve the scalability. The entries

of the dynamic table have low interdependencies. Hence, they are easy to parallelize.

Moreover, as the runtime is significantly affected by the storage capacity, the smart

grid can be partitioned into several smaller grids with smaller storage capacity. This

improvement in runtime would be quadratic in nature. As the focus of this paper is

to develop a new supply demand matching framework with reasonable performance, a

detailed analysis of such techniques is omitted.
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Chapter 7

Conclusion and Future Work

In this chapter, we will provide concluding remarks to the dissertation with a discussion

on the broader impacts of the work and the future directions it can lead into.

7.1 Broader Impacts

The rapid increase in the penetration of Distributed Energy Resources such as PVs and

batteries in the grid has decentralized energy generation [31]. This has enabled the

development of microgrids wherein a localized group of electricity sources and loads

constitute a subsystem which can be islanded i.e. operated without any import or export

of electricity from outside the subsystem [39]. We envision future smart grids consist-

ing of several microgrids operating as separate monolithic systems which interact with

the larger distribution system as a single entity. A holistic microgrid controller which

consists of an integrated modeling, prediction and optimization framework is impera-

tive for reliable, secure and economic operation of such microgrids [9]. Optimization

frameworks along the line developed in this work will be a significant component of

such microgrid controllers.

Moreover, in the absence of fine grained control, several components of the grid

exhibit discrete operational values. As evident from Table V in the survey paper [71],

while a plethora of optimization algorithms have been developed for grids with contin-

uous operational values (for example, see column titled ”convex optimization problem”

in the table), similar algorithms and analysis techniques are lacking for the discrete
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case. The research community has focused only on Integer/Mixed Integer Programming

based algorithms which are computationally intractable or heuristics which have no the-

oretical optimality guarantees. The fast and optimal algorithms developed in this work

and accompanying theoretical analyses will enable further development of sophisticated

optimization frameworks for controlling discrete smart grids.

7.2 Future Directions

Approximation algorithms are powerful tools to develop provably optimal polynomial

runtime algorithms for a wide range of NP hard problems. In this section, we discuss

a couple of open problems in the domain of smart grid and the larger domain of smart

cities/infrastructure.

7.2.1 Discrete Multi Phase Supply Demand Matching

The algorithms developed in this work focus on supply demand matching of active sin-

gle phase power assuming no power losses due to resistance and reactance of the dis-

tributors and feeders. The assumption here is that any fluctuations in reactive power

that occurs by modifying the active power can be addressed by reactive power control

techniques such as Volt-Var Optimization [52]. In order to create a holistic smart grid
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control framework, this assumption needs to be addressed. Consider the relaxed branch

flow model and the optimal power flow (OPF) problem defined over it [32]:

min
p,q,P,Q,l,v

f (7.1)

subject to

pj =
∑
k:j→k

Pjk −
∑
i:i→j

(Pij − rijlij) + gjvj, ∀j (7.2)

qj =
∑
k:j→k

Qjk −
∑
i:i→j

(Qij − xijlij) + bjvj, ∀j (7.3)

vj = vi − 2(rijPij + xijQij) + (r2
ij + x2

ij)lij ∀(i, j) ∈ E (7.4)

lij ≥
P 2
ij +Q2

ij

vi
∀(i, j) ∈ E (7.5)

The above OPF is defined on a smart grid modeled using a directed graph G = (V , E)

with edges denoted using (i, j) or i→ j, and i and j being the vertices. pj and qj denote

the active and reactive power injected at vertex j. vj denotes the voltage magnitude. Pij ,

Qij and lij denote the active power, reactive power and the magnitude of current flowing

over edge i→ j respectively.

Assuming all the variables as continuous entities, the above OPF is a convex relax-

ation. It is an exact relaxation for radial network under certain assumptions with respect

to the objective function and the maximum value of pj and qj .

Now, in order to solve the discrete version of the above OPF, the variables pj and

qj will belong to a discrete set instead of being continuous variables. Sophisticated

approximation algorithms to solve this formulation is an open research problem.
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7.2.2 Joint Optimization over Multiple Infrastructure for Smart

Cities

The proliferation of Internet-of-Things (IoT) based technologies is able to incorporate

seamlessly a large number of different and heterogeneous systems such as smart grids,

smart transportation [74] thereby evolving the current cities into smart cities. Sev-

eral components of such smart cities will exhibit discrete operational values and thus

sophisticated approximation algorithms will be required to jointly optimize over multi-

ple infrastructures. For example, the charging rates of Electric vehicles form a discrete

set of values. Similarly, the problem of smart parking needs to optimize over binary

variables denoting the occupancy or reservation status of parking spots [42].

Consider the following problem. A transportation company has a fleet of Electric

Vehicles (trucks or cars). From a starting location, each EV needs to visit a number of

pre-defined locations (for example to deliver goods) and return to the original location.

Given a graphical model of the transportation network, and assuming the costs are in

metric space, this problem is the classical traveling salesman problem (TSP) with an

approximation factor of 1.5.

In the context of smart cities, the problem can be extended as follows. In addition to

visiting the locations for delivery, the EVs can also visit charging station. In the charging

station, the EVs can charge themselves at some cost or provide the grid with a portion of

the energy stored in their batteries, thereby receiving a monetary compensation. Hence,

the problem that needs to solved is to minimize the sum of the charging costs, the travel-

ing costs minus the discharging compensation while ensuring all the locations are visited

within a fixed deadline.
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7.3 Concluding Remarks

Approximation algorithms are strong techniques to solve several intractable real world

problems in a reasonable amount of time while providing theoretical worst case guar-

antees. However, their application in the domain of smart grids and the more general

domain of smart cities has been limited. In this work, we show that using these tech-

niques for solving the problem of discrete supply demand matching in smart grids can

lead to significant improvements over the state of the art.

The work done in this dissertation are first steps towards wider applications of

approximation algorithms in these domains. We hope that this dissertation can spark

the interest of research community in the applications of approximation algorithms for

smart grids and smart cities. This will lead to the development of scalable and reliable

solutions for various challenging problems in these domains. Moreover, new theoretical

insights developed as a result will broaden the understanding of several core problems

of interest to the theoretical computer science community.
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