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Smart Grid Overview
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• Power grids with remote monitoring 

and control capabilities

• Trends

– Fine grained sensing infrastructure

– Remote control capability

– Decentralization of generation via 

proliferation of Distributed Energy 

Resources (DER)



Our Focus – Discrete Microgrids (1)
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• Example: USC Campus Microgrid

• Components

– Centralized Controller e.g. USC FMS

– Consumers: Buildings, athletic field, etc.

– Producers: Photovoltaics (PV)

• Operational Values

– Consumers: Load Values

– Producers: Supply Values 

At any given time step, 

the feasible region of the operational values forms a discrete set



Our Focus – Discrete Microgrids (2)
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• Load Curtailment Strategies

– Global Temperature Reset (GTR)

– Duty Cycling (DUTY)

– Variable Frequency Drive (VFD)

• Solar Curtailment Strategies

– (Dis) Connecting a subset of PV 

modules using micro-inverters  

Node 2

Node 1

Node 3

Node 4



Supply Demand Matching (1)
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• Critical grid operation to ensure reliability

• Major steps

– Advanced planning for dispatch of supply and demand

– Real time regulation using low ramp up time generators (e.g. storage) to 

contain mismatches 

• Challenges in discrete microgrid

– Supply variability due to heavy influence of weather

– Increased prediction errors for longer future horizon

– Non convex, NP hard optimization on discrete sets



Supply Demand Matching (2)
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• Trade-off

• Solution

– Real-time discrete optimization and dispatch of controllable load and 

generation

– Real-time: ~2.5 minutes as per CAISO real time dispatch specification

Real time 
regulation windowAdvance Planning window

Available computation time

Regulation 
overheads

Optimization start

Time



State of the Art

Supply Demand Matching in Discrete Microgrids
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• Fast convex optimization solutions

– Assume continuous operational values

– Limitation: Unbounded errors on discrete sets 

• Computationally expensive exhaustive search

– Limitation: violates tight grid timing constraints

• Heuristics with unbounded errors

– Limitation: compromises grid reliability



Our Contribution
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• Modeling Supply Demand Matching as variants of packing problems e.g. 

knapsack, subset sum

• Develop Dynamic Programming based approximation algorithms

• Significant Results

– Polynomial runtime complexity algorithm

– Theoretical worst case bounds

• Constraint violations

• Objective value errors
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Thesis Statement
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• Dynamic Programming based approximation algorithms are well 

suited to perform scalable and bounded supply demand matching in 

discrete microgrids 

• Definitions

– Scalable: In terms of runtime with respect to number of nodes

– Bounded: Worst case guarantee on the amount of constraint violation or 

objective value error from the optimal solution
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Research Contributions:
Summary
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• Optimal Curtailment Selection for Demand Response

– Problem: Control demand to reduce load by a targeted amount

– Result: Bounded deviation between achieved and targeted reduction

• Cost Optimal Supply Demand Matching

– Problem: Dispatch supply and demand at minimum cost

– Result: Minimum cost dispatch with bounded supply demand imbalance

• Discrete Supply Demand Matching Under Prediction Uncertainty

– Problem: Dispatch supply and demand minimizing cost and expected 

uncertainty due to prediction errors

– Result: Dominating solutions (Pareto frontier) with bounded cost and 

uncertainty deviation from the optimal
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Demand Response
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• Problem

– Limited generation capacity

– Supply demand imbalance during peak demand periods 

• Solution: Adapt demand to supply conditions

• Demand Response: Change in electricity usage affected from the 

Demand side in Response to a signal from the utility

Normal Consumption Reduced Consumption



Load Curtailment Strategies
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• Pre-configured strategies to reduce 

consumption

• Activated using control signals

• Example Strategies

– Global Temperature Reset: Reset Air 

Temperature set point 

– Variable Frequency Drive: Control air flow 

motor speed

– Duty Cycling:  Turn on only a portion of fans 

at a time

Minutes 20                      40                     60 

Group 1 Fans

Group 2 Fans

Group 3 Fans

Minutes         20                      40                     60 

Minutes         20                      40                     60 

Fan Duty Cycling



Problem Definition
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• Given

– 𝑀 customers, with 𝑁 available strategies for each customer 

– 𝑀 ×𝑁 time varying curtailment matrix 𝛾(𝑡) with 𝛾𝑏𝑗(𝑡) denoting the 

curtailment value corresponding to customer 𝑏 adopting strategy 𝑗 at time 𝑡

– 0-1 decision matrix: X 𝑡

– Targeted per interval curtailment value: Γ(t)

• Objective

– Select customers and the strategies they should adopt to achieve per 

interval targeted curtailment value

• Constraints

– Bound the number of strategy switches between intervals



Sustainable Demand Response

with Strategy Overheads
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• Minimize: σ𝑡=1
𝑇 𝜖𝑡

• Subject to:

෍

𝒃=𝟏

𝑴

෍

𝒋=𝟏

𝑵

𝜸𝒃𝒋 𝒕 ∗ 𝒙𝒃𝒋 𝒕 − 𝚪(𝒕) ≤ 𝝐𝒕 ∀𝒕

෍

𝑗=1

𝑁

𝑥𝑏𝑗(𝑡) = 1 ∀𝑏

𝑥𝑏𝑗(𝑡) ∈ {0,1}

𝑆𝑏𝑗 𝑡 = 𝑥𝑏𝑗 𝑡 − 𝑥𝑏𝑗 𝑡 − 1 ∀𝑏, 𝑗 ∈ [𝑁], 𝑡 ∈ {2…𝑇}

෍

𝒕=𝟐

𝑻

෍

𝒋=𝟏

𝑵

𝑺𝒊𝒋 𝒕 ≤ 𝟐𝝉 ∀𝒃

Per Interval Target

Bounding 
Number of 

strategy 
switching 



Sustainable Demand Response

with Strategy Overheads:
Approximation Algorithms
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• Challenge

– Intractable ILP

• Solution

– Simplify problem and develop approximation algorithms

– Simplification #1

• Achieve aggregated curtailment instead of per interval curtailment

– Simplification #2

• Achieve per interval curtailment without strategy switching overheads

– Simplification #3

• Achieve aggregated curtailment without strategy switching overheads



NOLESS
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• Near OptimaL CurtailmEnt Strategy Selection

• Simplification

– Achieve curtailment target for the entire interval

– Do not enforce per interval curtailment achievement constraint 

• Additional Constraints

– 𝜒𝑏 𝑖, 𝑗 : cost of switching from strategy 𝑖 to 𝑗 for building 𝑏

– 𝜏𝑏: Upper bound on strategy switching costs for 𝑏



NOLESS

Problem Definition
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• Minimize: 𝜖

• Subject to:

෍

𝒕=𝟏

𝑻

෍

𝒃=𝟏

𝑴

෍

𝒋=𝟏

𝑵

𝜸𝒃𝒋 𝒕 ∗ 𝒙𝒃𝒋 𝒕 − 𝚪(𝒕) ≤ 𝝐

෍

𝑗=1

𝑁

𝑥𝑏𝑗(𝑡) = 1 ∀𝑏

𝑥𝑏𝑗(𝑡) ∈ {0,1}

𝑆𝑏𝑖𝑗 𝑡 = 𝑥𝑏𝑗 𝑡 − 𝑥𝑏𝑖 𝑡 − 1 ∀𝑏 ∈ 𝑀 ∀𝑖, 𝑗, ∈ [𝑁] 𝑡 ∈ {2…𝑇}

෍

𝒕=𝟐

𝑻

෍

𝒊=𝟏

𝑵

෍

𝒋=𝟏

𝑵

(𝒙𝒃𝒊 𝒕 − 𝟏 + 𝒙𝒃𝒋 𝒕 − 𝑺𝒃𝒊𝒋 𝒕 )𝝌𝒃(𝒊, 𝒋) ≤ 𝟐𝝉𝒃 ∀𝒃

Bounding strategy switching cost

Minimize aggregate error



NOLESS:

Dynamic Programming Solution
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DP#1: Boolean function 𝚯𝐛 for each building 𝒃

Θ𝑏 𝛾, 𝑡, 𝑆𝑘 , 𝑞𝑡 = 1 𝑖𝑓 ∃𝑗 ∈ 𝑁 Θb(𝛾 − 𝛾𝑏𝑘 𝑡 , 𝑡 − 1, 𝑆𝑗 , 𝑞𝑡 − 𝜒𝑏(𝑗, 𝑘))

• Can we achieve curtailment 𝜸 at time 𝒕 with strategy 𝒌 and cost 𝒒𝒕 ?

• Yes, if there exists 𝑗 s.t. Θb(𝛾 − 𝛾𝑏𝑘 𝑡 , 𝑡 − 1, 𝑆𝑗 , 𝑞𝑡 − 𝜒𝑏(𝑗, 𝑘))

• Fill DP and create set 𝜃𝑏: All possible achievable 𝛾 values satisfying 
constraints

𝜃𝑏 = ∪ 𝛾𝑙 ∃ 𝑆𝑘 , 𝑞 , Θ𝑏 𝛾𝑙 , 𝑇, 𝑆𝑘 , 𝑞 = 1 & 𝒒 ≤ 𝝉𝒃}



NOLESS:

Dynamic Programming Solution
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DP#2: Pick exactly one element 𝛾𝑏 from each set 𝜃𝑏

s.t. : σ𝛾𝑏 = σ𝑡=1
𝑇 Γ(𝑡)

Boolean function 𝚽 to optimize across all buildings

Φ 𝛾, 𝑏 = 1 ∃𝛾𝑏, Φ 𝛾 − 𝛾𝑏, 𝑏 − 1 = 1

• Possible to achieve 𝜸 using 1,… , 𝒃 ↔ Possible to achieve 𝜸 − 𝜸𝒃 using 

1,… , 𝒃 − 𝟏



NOLESS:

Rounding Approximation Technique
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• Challenge

– 𝑂(Γ) entries in dynamic programming table

– Γ = σ𝑡=1
𝑇 Γ(𝑡)

• Solution

– Choose an accuracy parameter 𝜖

– Partition Γ into number of buckets polynomial in input size and 
1

𝜖

0 1 Γ… 𝛾 Γ-1…Γ − 𝛾

0 ෠Γ



NOLESS
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• Approach

– 𝜇 =
𝜖Γ

𝑇𝑀

– ො𝛾 = ⌊
𝛾

𝜇
⌋

• Fill Dynamic Programming tables using rounded curtailment values

• Runtime: 𝑂
𝑇3𝑀𝑁2

𝜖
+ 𝑂(

𝑀3𝑇2

𝜖2
), assuming 𝜏𝑏 = 𝑂(𝑇)

• Result

– Worst case curtailment error: 𝜖Γ

– Example: Γ = 1000 kwh, 𝜖 = 0.1, Error = < 100 kwh



Results and Analysis
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• Dataset

– USC Smart Grid Demand Response Program

– Number of nodes: 10-100

– Number of strategies: 6

– Number of time intervals: 16

– Target Curtailment: 100-1500 kWh

• Toolkit

– Baseline

• IBM Cplex for ILP formulations

– NOLESS Approximation Algorithm

• Java

• Platform: Dell Optiplex 4-cores, 4 GB RAM



Results and Analysis
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• Achieved error always less than the 

guarantee provided by 𝜖

• Scalability

− Quadratic in nodes and 
1

𝜖

• 150 seconds

− 90 nodes with 5% error

• Runtime of Baseline (CPLEX): a 

few seconds to more than an 

hour 



Research Contributions:
Summary
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• Optimal Curtailment Selection for Demand Response

– Problem: Control demand to reduce load by a targeted amount

– Result: Bounded deviation between achieved and targeted reduction

• Cost Optimal Supply Demand Matching

– Problem: Dispatch supply and demand at minimum cost

– Result: Minimum cost dispatch with bounded supply demand imbalance

• Discrete Supply Demand Matching Under Prediction Uncertainty

– Problem: Dispatch supply and demand minimizing cost and expected 

uncertainty due to prediction errors

– Result: Dominating solutions (Pareto frontier) with bounded cost and 

uncertainty deviation from the optimal
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Cost Optimal Supply Demand Matching: 

Motivation

31

• Trend

– Rapid penetration of DERs 

such as solar PVs

• Challenge

– Periods with supply surplus 

causing over voltages

– Load Curtailment inadequate 

to mitigate supply surplus

• Solution

– Supply Curtailment



Solar Curtailment Technique
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• Modern PVs installations

– Individual PVs grid connected using single micro-

inverter

• Solar curtailment

– Turn on/off individual micro-inverter

– Simple coarse grained control

• PV Installation Output

– Sum of supply from grid connected PV modules (micro-

inverters in on configuration)

PV module

Micro-inverter

Grid

[1]

[1] Microinverter Curtailment Strategy for Increasing Photovoltaic Penetration in Low-Voltage Networks, Gagrica et. al., 
IEEE Transactions on Sustainable Energy, Vol 6, No 2, April 2015 



Cost Optimal Supply Demand Matching:

Framework

33

• Unified framework that performs

– Supply curtailment using PV micro-

inverters

– Load curtailment using DR 

strategies



Cost Optimal Supply Demand Matching:

Problem Definition
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• Model

– 𝑀 nodes, 𝑁 strategies, 𝑇 intervals

• 𝛾𝑏𝑗 𝑡 /𝑐𝑏𝑗 𝑡 : Curtailment/cost of node 𝑏 following strategy 𝑗 at 

time 𝑡

• 𝒙𝒃𝒋 𝒕 : 0-1 decision variable node 𝑏 following strategy 𝑗 at time 𝑡

• Γ𝑡: Curtailment target for time 𝑡

• Additional constraints

– Fairness: No node should curtail more that its budget 𝐵𝑏
– Ensures equitable curtailment burden



Cost Optimal Supply Demand Matching:

ILP Formulation

35

𝑚𝑖𝑛𝑥 ෍

𝑏=1

𝑀

෍

𝑗=1

𝑁

෍

𝑡=1

𝑇

𝑐𝑏𝑗 𝑡 𝑥𝑏𝑗(𝑡)

𝑠. 𝑡.෍

𝑏=1

𝑀

෍

𝑗=1

𝑁

𝛾𝑏𝑗 𝑡 𝑥𝑏𝑗 𝑡 ≥ Γ𝑡 ∀𝑡

෍

𝑗=1

𝑁

෍

𝑡=1

𝑇

𝛾𝑏𝑗 𝑡 𝑥𝑏𝑗 𝑡 ≤ 𝐵𝑏 ∀𝑏

Minimize Cost

Per interval target achieved

Fairness Constraint

• Packing Integer Problem with each integer appearing in 𝑘 = 3
constraints

• 𝑒𝑘 + 𝑂 𝑘 → > 8 - approximation factor



Cost Optimal Supply Demand Matching:

Approximation Algorithms

36

• Simplification #1

– Remove fairness constraint

– Add upper bound on achieved curtailment Γ = σ𝑏=1
𝑀 𝐵𝑏

• Simplification #2

– Assume costs proportional to curtailment 

• Other Versions

– Supply Demand matching with network constraints



MinCB: Min Cost Net Load Balancing
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• Objectives

– Γ𝑡 achieved for each interval

– Aggregate curtailment in 𝑇 intervals is less than Γ = σ𝑏=1
𝑀 𝐵𝑏

– Cost minimized

• Integer Program Formulation

𝑚𝑖𝑛𝑥 ෍

𝑏=1

𝑀

෍

𝑗=1

𝑁

෍

𝑡=1

𝑇

𝑐𝑏𝑗 𝑡 𝑥𝑏𝑗(𝑡)

𝑠. 𝑡.෍

𝑏=1

𝑀

෍

𝑗=1

𝑁

𝛾𝑏𝑗 𝑡 𝑥𝑏𝑗 𝑡 ≥ Γ𝑡 ∀𝑡

෍

𝑏=1

𝑀

෍

𝑗=1

𝑁

෍

𝑡=1

𝑇

𝛾𝑏𝑗 𝑡 𝑥𝑏𝑗 𝑡 ≤ Γ

Minimize Cost

Per interval target achieved

Avoid excessive curtailment



MinCB:

Approximation Algorithm (1)

38

• Two level Dynamic Program

• First Level

– For each time 𝑡

– Dynamic Programming Recursion:

• Identify minimum cost to achieve 𝛾 using 

1,… , 𝑏 nodes

Θ𝑡 𝛾, 𝑏 = m𝑖𝑛
j
{Θ𝑡 𝛾 − 𝛾𝑏𝑗 𝑡 , 𝑏 − 1 + 𝑐𝑏𝑗(𝑡)}

– Select nodes strategy pairs with:

• 𝑐: cumulative cost

• 𝛾: cumulative curtailment

• And:

𝑆𝑡 = (Θ𝑡 𝛾,𝑀 , 𝛾) 𝛾 ≥ Γ𝑡

…
…
…

≥ Γ𝑡1 ≥ Γ𝑡2

≤ Γ

Time  

Node



MinCB:

Approximation Algorithm (2)
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• Across all time intervals

– Select exactly 1 element (𝑐𝑡, 𝛾𝑡) from each 

𝑆𝑡 s.t:

– σ𝑡=1
𝑇 𝛾𝑡 ≤ Γ and σ𝑡=1

𝑇 𝑐𝑡 minimized

• Second Level Dynamic Program 

Recursion:

– Identify minimum cost to achieve 𝛾 using 

1,… , 𝑡 time intervals 

Φ 𝛾, 𝑡 = min
𝑗| 𝑐𝑗,𝛾𝑗 ∈𝑆𝑡

{Φ 𝛾 − 𝛾𝑗 , 𝑡 − 1 + 𝑐𝑗}

• Final result: min
𝛾

Φ(𝛾, 𝑇)

…
…
…

≥ Γ𝑡1 ≥ Γ𝑡2

≤ Γ

Time  

Node



MinCB:

Approximation Algorithm (3)
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• User defined accuracy parameter 𝜖

• Apply rounding technique for approximation

• Result

– Cost minimized

– Curtailment Error Bounds

• Aggregate Γ: (1 + 𝜖) factor

• Per interval Γ𝑡: (1 − 𝜖) factor 

Minimum Cost solution in 
the vicinity of the optimal

𝛾∗



Results and Analysis:

Experimental Setup (1)
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• Implementation

– Algorithms: MATLAB

– Integer Program/Linear Program: IBM ILOG Cplex Optimization Studio

– Platform: Dell Optiplex 4-cores, 4 GB RAM

• Parameters

– Horizon: 16 intervals

– Cost: 2 × 𝛾2

• Dataset

– Load Curtailment: USC Demand Response program

– Solar Curtailment

• Simulated Data using hourly solar radiance data for USC



Scalability:

MinCB
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• Scalability:

– Quadratic increase in 

runtime with number of 

nodes

–
1

𝜖2
dependence on 

accuracy parameter 𝜖

• 150 seconds

– 40 nodes with 20% error

– 25 nodes with 10% error



Improvement in PV Penetration

43

• PV Penetration = 
𝑃𝑉𝑎𝑣𝑔

𝐿𝑜𝑎𝑑𝑎𝑣𝑔
× 100

• Limit on PV penetration

– Average supply + 1 std < 

minimum load

• Maximum Curtailment: 1 − 𝜖
times maximum supply

– Supply: 100 kwh, 𝜖 = 0.1

– Max Curtailment: 90 kwh

• Potential PV penetration 

increase from ~13% to 250%
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Supply Demand Matching with Prediction 

Uncertainty: Motivation

45

• Supply Demand Predictions for future horizon have prediction errors

• Prediction errors create uncertainty in grid operation

• Model: Two stage decision making[2]

– Dispatch load/generation in first stage

– Use storage to address supply demand mismatch in second stage 

• Scenario: 

– Random variable 𝑋, governed by randomness 𝜉

– Scenario 𝜀 ∈ 𝜉 corresponds to a single realization of randomness

[2] Sampling Bounds for Stochastic Optimization, Charikar, Moses, Chandra Chekuri, and Martin Pál , Approximation, 
Randomization and Combinatorial Optimization. Algorithms and Techniques. Springer, Berlin, Heidelberg, 2005. 257-269 



Supply Demand Matching with Prediction 

Uncertainty (2)

46

• Supply side control

– Supply Value: 𝛾𝑖𝑗 + 𝛿𝑖𝑗
𝜀

– 𝛾𝑖𝑗: predicted supply value for node 𝑖 strategy 𝑗

– 𝛿𝑖𝑗
𝜀 : realization of supply uncertainty value in scenario 𝜀

• 𝐶 𝑥 : σ𝑖=1
𝑀 σ𝑗=1

𝑁 𝑐𝑖𝑗𝑥𝑖𝑗: cost of supply dispatch decision 𝑥

• 𝑣 𝑥, ε :σ𝑖=1
𝑀 σ𝑗=1

𝑁 𝛿𝑖𝑗
𝜀 𝑥𝑖𝑗: uncertainty due to first stage dispatch decision 𝑥

for scenario 𝜀

• 𝑋 = 𝑥 σ𝑖=1
𝑀 σ𝑗=1

𝑁 𝛾𝑖𝑗𝑥𝑖𝑗 = 𝐷}, 𝐷 being the expected demand



Supply Demand Matching with Prediction 

Uncertainty (3)

47

• Multi-Objective Optimization: Minimize the cost of dispatch in first stage 

and expected uncertainty in second stage

min
𝑥

𝐶 𝑥 , 𝐸[𝑣 𝑥 ]

𝑠. 𝑡. 𝑥 ∈ 𝑋

• By linearity of expectation: 𝐸 𝑣 𝑥 = σ𝑖=1
𝑀 σ𝑗=1

𝑁 𝑣𝑖𝑗𝑥𝑖𝑗

• 𝑣𝑖𝑗 → Expected uncertainty value of node 𝑖 following strategy 𝑗

• Dynamic Programming Formulation

Θ 𝛾, 𝑐, 𝑖 = m𝑖𝑛
j
{Θ 𝛾 − 𝛾𝑖𝑗 , 𝑐 − 𝑐𝑖𝑗 , 𝑖 − 1 + 𝑣𝑖𝑗}

• Identify minimum expected uncertainty to achieve 𝜸 at cost 𝒄 using 

1,… , 𝑖 nodes



Supply Demand Matching with Prediction 

Uncertainty (4)

48

• Rounding Approximation Technique

• Find Pareto optimal solutions on the set: Θ(𝐷, ∶,𝑀)

– All cost, uncertainty pairs that achieve 𝐷 in first stage using 1, … ,𝑀 nodes

• Approximation Guarantee

– (1 + 𝜖) factor for cost

– Uncertainty minimized

– 𝜖𝐷 difference from first stage optimal supply



Supply Demand Matching with Prediction 

Uncertainty (5)

49

• Challenge: How to calculate 𝑣𝑖𝑗?

– Possibly exponential number of scenarios

– Even tractable problem definition not possible

• Solution

– Latent state model

• Assume a latent variable realizes all the random variables simultaneously

• Use expectation value of uncertainty for each random variable independently

– Blackbox model

• A blackbox realizing scenarios

• Sample scenarios using 𝑂(1) operation

S

Latent State Model
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• Assumptions

– 0 ≤ 𝑣 𝑥, 𝜀 ≤ 𝜆𝑍∗, where 𝑍∗: optimal expected uncertainty, 𝜆 problem 

parameter

• Implications

– Worst case uncertainty for a given decision 𝑥 for a given scenario 𝜀 is not 

“too large” compared to the optimal expected uncertainty

• Approximation Algorithm

– Choose 𝜖 > 0: accuracy parameter, 𝛿 > 0.5 probability parameter

– Sample 𝐾 = Θ(𝜆2𝜖−2 log 𝑋 log
1

𝛿
)

– Use DP based approximation algorithm to generate dominating solutions
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• With probability (1 − 𝛿)

– Approximation factor: (2 + 𝜖) for uncertainty

– Runtime: polynomial in 𝜆,
1

𝛿
,
1

𝜖
and input size

• Proof Sketch

– 𝑖th sample: 𝑣𝑖(𝑥)

– Define 𝑌𝑖 =
𝑣𝑖 𝑥

𝜆𝑍∗
, 𝑌𝑖 ∈ [0,1]

– Apply Chernoff’s bound for σ𝑌𝑖 − 𝐸 σ𝑌𝑖 > 𝜖𝐾

– To get bound on σ𝑣𝑖 𝑥 − 𝐸[𝑣 𝑥 ]
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• Implementation

– Algorithms: python

– Platform: Dell Optiplex 4-cores, 4 GB RAM

• Parameter

– Cost: 2𝛾2

– Uncertainty: 0.5𝛾

• Dataset

– Solar Generation Data

• Simulated Data using hourly solar radiance data for USC
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• Scalability

– Cubic increase in runtime with 

number of nodes

–
1

log3 1+𝜖
dependence on 

accuracy parameter 𝜖

• 150 seconds

– 25 nodes for 20% error

– 30 nodes for 30% error

– 40 nodes for 40% error



Outline
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• Motivation and Background

• Thesis Statement

• Research Contributions

– Optimal Curtailment Selection for Demand Response

– Cost Optimal Supply Demand Matching

– Discrete Supply Demand Matching Under Prediction Uncertainty

• Impact and Conclusion
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• LA Smart Grid Demonstration 

Project

– Successful implementation of 

Demand Response program in 

USC

– As high as 1.2 MWh curtailment 

achieved in a single DR event

– Knowledge Transfer to LADWP 

for implementation in LA

– Patent Pending: System for 

Automated Dynamic Demand 

Response
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• Polynomial runtime complexity supply demand matching algorithms with 

bounds on worst case errors

• Problems studied

– Optimal Demand Response: Curtailment error bounded by 𝜖 factor of the 

targeted error

– Cost Optimal Supply Demand Matching: Cost minimized with 𝜖 factor bound 

on curtailment constraint violation

– Supply Demand Matching with Prediction Uncertainty:  Dominating solutions 

with cost  and uncertainty within 2 + 𝜖 factor
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• Questions?

• Personal Webpage: http://sraok.space

P-group Vidushak Indian Improv Comedy Group
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• State of the art Approximate Supply Demand Matching

– Constant Factor algorithms for peak demand reduction based on strip 

packing

• Other applications of approximation algorithms in smart grids

– Placement Problems: PMU, Storage, generation using submodularity

– Steiner tree based protection tree for cyber physical security of smart grids
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• Simplification: No strategy switching costs considered

• Minimize: σ𝑡=1
𝑇 𝜖𝑡

• Subject to:

– σ𝑖=1
𝑀 σ𝑗=1

𝑁 𝛾 𝑖𝑗 𝑡 ∗ 𝑥 𝑖𝑗 𝑡 − Γ(𝑡) ≤ 𝜖𝑡 ∀𝑡

– σ𝑗=1
𝑁 𝑥 𝑖𝑗 (𝑡) = 1 ∀𝑖

– 𝑥 𝑖𝑗 (𝑡) ∈ {0,1}
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• Approximation Algorithm

– Variant of Subset sum problem

• DP:

Θ𝑡(𝛾, 𝑏) = ቊ
1 ∃𝑗 ∈ 𝑁 , Θ𝑡 𝛾 − 𝛾𝑏𝑗 , 𝑏 − 1 = 1

0

• Rounding scheme: 𝜇 =
𝜖Γ

𝑀

• Runtime: 𝑂(
𝑀2𝑁

𝜖
)

• Worst case approximation error: 𝜖Γ
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• Assume costs are a function of 

curtailment: 𝑐 = 𝑓(𝛾)

• (2,2)-factor algorithms using LP rounding 

technique (linear 𝑓)

• Transform Level Supply Demand Matching

– Distributor capacity constraints violated by 

at most (1 − 𝜖) factor

• Smart Grid Level Supply Demand 

Matching with Network Capacity 

Constraints

– Feeder and distributor capacity constraints 

violated by at most (1 − 𝜖) factor

– Required supply/demand curtailment within 

(1 ± 2𝜖) of optimal 
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• Assume costs are a function of curtailment: 𝑐 = 𝑓(𝛾)

• Integer Program:

𝑚𝑖𝑛𝑥 ෍

𝑏=1

𝑀

෍

𝑗=1

𝑁

෍

𝑡=1

𝑇

𝑓(𝛾𝑏𝑗 𝑡 )𝑥𝑏𝑗(𝑡)

𝑠. 𝑡.෍

𝑏=1

𝑀

෍

𝑗=1

𝑁

𝛾𝑏𝑗 𝑡 𝑥𝑏𝑗 𝑡 ≥ Γ𝑡 ∀𝑡

෍

𝑗=1

𝑁

෍

𝑡=1

𝑇

𝛾𝑏𝑗 𝑡 𝑥𝑏𝑗 𝑡 ≤ 𝐵𝑏 ∀𝑏
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• Relax the Integer Program to Linear Program i.e. 0 ≤ 𝑥𝑏𝑗
∗ 𝑡 ≤ 1 ∀𝑏, 𝑡

• 𝛾′ ← σ𝑗=1
𝑁 𝛾𝑏𝑗 𝑡 𝑥𝑏𝑗

∗ (𝑡)

• Round 𝛾′ to strategy 𝑖 with nearest curtailment value for node 𝑏 at time 

𝑡: 𝛾𝑏𝑖(𝑡)

• Result: For a linear cost function 𝑓, the algorithm above is a (2,2)-factor 

Algorithm. For quadratic cost function 𝑓, the algorithm is (4,2)-factor 

algorithm
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Future Direction #1: 
Discrete Multi Phase Supply Demand Matching
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• Discrete optimization considering

– Active and reactive power

– Phase angles

– Control variables: 𝑝, 𝑞

min
𝑝,𝑞,𝑃,𝑄,𝑙,𝑣

𝑓(𝑝, 𝑞, 𝑃, 𝑄, 𝑙, 𝑣)

𝑝𝑗 = ෍

𝑘:𝑗→𝑘

𝑃𝑗𝑘 − ෍
𝑖:𝑖→𝑗

𝑃𝑖𝑗 − 𝑟𝑖𝑗𝑙𝑖𝑗 + 𝑔𝑗𝑣𝑗 ∀𝑗

𝑞𝑗 = ෍

𝑘:𝑗→𝑘

𝑄𝑗𝑘 − ෍
𝑖:𝑖→𝑗

𝑄𝑖𝑗 − 𝑥𝑖𝑗𝑙𝑖𝑗 + 𝑏𝑗𝑣𝑗 ∀𝑗

𝑣𝑗 = 𝑣𝑖 − 2 𝑟𝑖𝑗𝑃𝑖𝑗 + 𝑥𝑖𝑗𝑄𝑖𝑗 𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2 𝑙𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 𝐸

𝑙𝑖𝑗 ≥
𝑃𝑖𝑗
2 + 𝑄𝑖𝑗

2

𝑣𝑖
Equality relaxation

Phase angle 
relaxation



Future Direction #2: 
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• Discrete Operational values

– Smart Parking: Binary variables

– EV charging rates: Discrete values

• Example Problem

– EV Truck to visit a set of pre-defined 

locations for delivery and return (TSP)

– Possibly visit Charging/Discharging 

location to charge or provide grid services 

(Shortest path problem)

– Objective: Minimize sum of charging 

costs, traveling costs minus discharging 

compensation

– Constraints: Delivery deadline

Charging station

Delivery location

Starting 
location


