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Future Energy Systems (1)
• Rapid Urbanization – increase in 

energy consumption
– 6.5 Billions will live in urban areas by 2050

• Several Challenges still abound
– 1 in 7 lack electricity access

– 60% of green house gases comes from 
energy sector

Need novel, environmentally responsible solutions to the challenges 
resulting from rapid urbanization and population growth
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Future Energy Systems (2)

Smart Grids Smart Cities

Smart Oilfields
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Future Energy Systems (3)

• Challenges
– Unknown Complex System Dynamics

– Need for Rapid Decision Making

– High Cost of Failure

• Opportunities
– Vast amount of available data from IoT enabled sensing and monitoring devices

– Fast IoT enabled asset control especially with the upcoming 5G standard

• Need for Data Science enabled Optimization for Future Energy 
Systems
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Data Science

8

Prediction

LearningModeling

Optimization
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DEEP SOLAR

Fast Robust
Predictive Analytics

Realtime Scalable 
Optimization

Data Driven Grid Modeling

What if Scenario Analysis

Data DrivEn Modeling and Analytics for Enhanced System Layer ImPlementation

Objective: Enable deep penetration of solar in distribution system 

Challenges
• Partial observability of distribution system
• Stochasticity of solar generation
• Real time operational requirement 

http://deepsolar.usc.edu

http://deepsolar.usc.edu/
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Behind-the-Meter 
Solar Generation Disaggregation (1)

Background
• Problem: Disaggregate AMI Net-Load 

AMI Net-load = Consumption - Generation

• Inputs

– AMI data for each user

– Solar Irradiance

– Location information

• Output

– Consumption

– Generation

• Challenges

– Ground truth unavailable -> 
unsupervised training

– Many ways to disaggregate a given 
time series

– Many latent factors that may affect 
consumption
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Behind-the-Meter 
Solar Generation Disaggregation (2)

Technology

• Identity PV vs non-PV customers via 
K-means

• Clustering of non-PV customers to 
find centroids

• Solve Disaggregation Optimization 
Problem

• AMI = load - generation
• Load modeling: linear combination of 

non-PV loads
• Generation modeling: linear function of 

solar irradiance

Model

Approach

Disaggregation Optimization Problem

• Load 𝑙(𝑡) = σ𝑖 𝜃𝑖𝑔𝑖(𝑡)
𝑔𝑖 𝑡 : centroids of clusters at time 𝑡

• Generation g(t) = 𝜙𝑅 𝑡
𝑅(𝑡) solar radiance at time 𝑡

• Find 𝜃, 𝜙 that minimizes:



𝑡=1

𝑇

(

𝑖

𝜃𝑖𝑔𝑖 𝑡 + 𝜙𝑅 𝑡 − 𝑦(𝑡))

2
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• Pecan Street dataset: AMI data for 200 customers

• Error metric: Mean Absolute Scaled Error (MASE) (Normalized error)

• ~11% lower MASE for generation, ~21% lower MASE for consumption

Behind-the-Meter 
Solar Generation Disaggregation (3)

Results

C. M. Cheung, W. Zhong, C. X. Xiong, A. Srivastava, R. Kannan, V. Prasanna, 
“Behind-the-Meter Solar Generation Disaggregation using Consumer Mixture Models,” IEEE Smartgridcomm 2018
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Synthetic Data Generation (1)
Background

• Motivation: Lack of large scale distribution network dataset due to

– Rapid evolution in DER types and technology

– Data availability from small scale testbeds only

• Problem: Generate synthetic datasets for smart grid applications

– Input: Small seed set of consumption and generation time series data

– Output: Large set of synthetic consumption and generation time series data

• Challenges

– Real life datasets contain too much noise

– Data distribution gradually shifts over time

C. Zhang, S. Kuppannagari, R. Kannan, V. Prasanna,
Generative Adversarial Network for Synthetic Time Series Data Generation in Smart Grids, SmartGridComm, 2018.

http://ganges.usc.edu/svn/pg/pubs/preprint/smartgridcomm2018_chi.pdf
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Synthetic Data Generation (2)
Technology

• Modeling

– Timeseries = Level (mean) + pattern (noise)

• Generative Adversarial Network (GAN): Two contesting neural networks -
sample generator vs evaluator 

• Approach

– Remove level from time series

– Train Conditional GAN to learn pattern

– Generate samples using GAN

– Add mean and output to final time series
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Synthetic Data Generation (3)
Results

• Dataset: Pecan Street

– Load/generation data for ~200 customers

• Generate synthetic data for each real 
time series data 

• Evaluation Metrics

– Maximum Mean Discrepancy (MMD)

– Real and synthetic dataset
indistinguishable for ML tasks
(clustering, prediction, etc.)

• Results

– MMD converges towards small 
value -> real and synthetic from 
similar distribution 

– Similar Mean Average Percentage 
Error (MAPE) distribution for load 
prediction -> probability of 
incurring an error 𝜖 similar under 
real and synthetic data
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Integrated Energy Management in Microgrids (1)
Background

• Motivation: Single Integrated modeling and control of DERs in a microgrid

– Distributed Energy Resources (DER): PV, EV, Storage, Smart Buildings

• Problem: Minimum cost DER scheduling in Microgrids

– Cost: generation reward, curtailment cost, etc.

– Scheduling: control the output of DER

– Inputs: Cost, output, grid constraints

• Challenges

– Large number of DERs and load

– Computationally intensive

– Constraints

• Real time operational requirement

• Voltage, power capacity



18

Integrated Energy Management in Microgrids (2)
Technology

• Modeling

– DER output behavior learning and 
prediction

– Physical constraints

• Limit PV supply into 
distributors

• Limit inverse power flow 
through feeders

• Approach

– Reinforcement Learning + 
Dynamic Programming based 
approximation algorithm

Theorem: Integrated Energy Management with:
• (1 + 𝜖) bound on worst case error 
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Integrated Energy Management in Microgrids (3)
Results

• DER – PV systems 
• Compare against optimal (ILP 

solution)

S. Kuppannagari, R. Kannan, and V. Prasanna Approximate Scheduling of DERs with Discrete Complex Injections, e-Energy 2019.

• Error less than 
theoretical bounds

Worst Case Error
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Towards Autonomous Energy Grids

Offline Learning

Knowledge Base

Control Signals
(load control, 

PV inverter control, 
storage control) 

Consumption  Models
(controllable/uncontrollable 

load models)

DER Models
(PV, EV, wind turbine, storage models)

Network  Models 
(meter, transformer info;

topology; feeder info)

Real Time Data
(load, DER output, 

voltages, 
phase angles, etc.)

Cloud

Other Data

Online Inferencing and 
Optimization

Autonomous Grid Operations
• Automated asset discovery and dispatch
• Self-healing 
• Resilient islanding
• Real time optimization for net zero  grids
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Cyclic Steam Job Candidate Selection (1)
Background

Motivation

• Injecting steam increases well temperature → 
Lowers oil viscosity  → increases production

Challenges

• High dimensionality of time series data

• Noisy data
Cheung, Chung Ming, Palash Goyal, Viktor K. Prasanna, and Arash Saber Tehrani. "OReONet: Deep convolutional network for oil 
reservoir optimization." In Big Data (Big Data), 2017 IEEE International Conference on, pp. 1277-1282. IEEE, 2017.

Problem

Predict production gain from a steam job

• Input: Time series data on production and 
well status before a steam job

• Output: Predict % gain in production after a 
steam job
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Cyclic Steam Job Candidate Selection (2)
Technology

Approach

1. Encode timeseries with Convolutional Autoencoder
2. Input autoencoder extracted features with manually extracted features to a 

regressor
3. Regressor outputs predicted gain
4. Choose highest gain wells for steam job
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• Dataset

• 4000 steam jobs in 1000 oil wells 
spanning 2014-2016

Cyclic Steam Job Candidate Selection (3)
Results
• Evaluation

• Regression using

• Baseline: Manually selected Features (MF)

• Auto-encoder Features (AF) 

• precision@k: % of good predictions in the top k 
predictions 

Support Vector Regression Kernel Regression

MF AF MF AF

Mean Squared Error 15.4 2.61 10.4 0.59

Overlap coefficient (50) 0.44 0.68 0.36 0.74

Precision@50 0.6 0.98 0.56 0.98
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Concluding Remarks

• Data Driven Optimization Imperative due to Unknown System Dynamics 
of Energy Systems 

• Novel applications of Data Science needed to address challenges of rapid 
urbanization and ensure sustainability

• Papers in this Workshop

– On Using Graph Signal Processing for Electrical Load Disaggregation

– Variations in Residential Electricity Demand across Income Categories in 
Urban Bangalore: Results from Primary Survey
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