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Electrical Load Disaggregation-Motivation

Electrical Load Disaggregation/ Non-Intrusive Load Monitoring: an
instance of Source Separation Problem

Disaggregate overall household energy consumption into load level without
using any devices/ plugs to capture consumption data from individual loads

Knowledge about the energy consumption of individual loads is key in
demand energy optimization.
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Problem Formulation

Problem: Given the aggregate power measurement X(t) , it is required to
compute the contribution of individual loads Xm(t) which could have
resulted in that measurement

The aggregate power can be expressed as:

X(t) =

M∑
m=1

Xm(t) + η

Here m ∈M,, where M is the total number of loads of interest and η is the
measurement noise at time instant t

Objective: Load identification and consumption estimation

One recent attempt is to use Graph Signal Processing (GSP) to solve it
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Introduction to Graphs and examples

Formally, a graph G (or a network) is a triplet (V, E , W).

Unweighted and directed graphs

V ={1, 2, . . . , N}
E ={(0, 1), . . . , (22, 23), (23, 0)}
W : (n,m)→ 1; for all (n,m) ∈ E

1 2 3

4 5 6

7 8 9

0 1 2 3 23

Unweighted and undirected graphs

V ={1, 2, . . . , N}
E ={{1, 2}, {2, 3}, . . . ,

{8, 9}, {1, 4}, . . . {6, 9}}
W : (n,m)→ 1; for all (n,m) ∈ E
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Graph signals

Graph signals are mappings x : V → R

Defined on the vertices of the graph

May be represented as a vector x ∈ RN

xn represents the signal value at the nth vertex in V

Inherently utilizes an ordering of vertices
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s =


−0.3
0.2
−0.5
0.3
−0.2
0.7



same ordering as in adjacency matrices
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Adjacency matrices

Given a graph G = (V, E , W) of N vertices,

Its adjacency matrix A ∈ RN×N is defined as

Anm =

{
wnm, if(n, m) ∈ E
0, otherwise

A matrix representation incorporating all information about G
I For unweighted graphs, one represent connected pairs

Inherently defines an ordering of vertices
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A =


0 1 0 0 0 1
1 0 1 0 0 1
0 1 0 1 1 1
0 0 1 0 1 0
0 0 1 1 0 1
1 1 1 0 1 0


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Degree matrix

The degree matrix D ∈ RN×N is a diagonal matrix s.t. Dii =deg(i)

Given a weighted and undirected graph G= (V, E , W).

The degree of a node is the sum of the weights of its incident edges

Equivalently, in terms of the adjacency matrix A

I deg(i)=
∑

j Aij =
∑

j Aji.
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D =


2 0 0 0 0 0
0 3 0 0 0 0
0 0 4 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 4


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Laplacian of a graph

Given a graph G with adjacency matrix A and degree matrix D

We define the Laplacian matrix L ∈ RN×N as

L = D −A

L =Laplacian matrix
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L =


2 −1 0 0 0 −1
−1 3 −1 0 0 −1
0 −1 4 −1 −1 −1
0 0 −1 2 −1 0
0 0 −1 −1 3 −1
−1 −1 −1 0 −1 4



The normalized Laplacian can be obtained as L = D−1/2LD−1/2
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Laplacian quadratic form

We can also define the Laplacian quadratic form of x

s>Ls = 1

2

∑
j∈Ni

wij(si − sj)2

s>Ls ≥ 0 for s 6= 0,L is positive semi-definite

Total variation of a signal is defined as the sum of squared differences in
consecutive signalsamples

∑
n(sn − sn−1)2

TVG(s) =

N∑
i=1

∑
j∈Ni

wij(si − sj)2 = s>Ls

A constant vector 1 is an eigenvector of L with eigenvalue 0

1>L1 =
1

2

∑
j∈Ni

wij(1− 1)2
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GSP Based Load Disaggregation

Load disaggregation can be formulated as t optimization problem:

min
Xm

β

∥∥∥∥∥X−
M∑

m=1

Xm

∥∥∥∥∥
2

2

+ α

M∑
m=1

Tr(XT
mLmXm) (1)

The above minimization problem in (1) is NP hard especially when number of
loads M and time instants N are large

Proposed Method: Graph Laplacian based regularization approach.

I Embed the structure of the X(t) on to a graph G=(V, E ,W )
I Represent the Xm(t) as a signal S on the graph G

Assumption: Graph signal is piecewise smooth graph total variation is small

Graph Total Variation is given by: s>Ls = 1
2

∑
j∈Ni

wij(si − sj)2

where, s is the graph signal and L is the graph Laplacian

Subbareddy 17 Dec., 2019 12 / 22



For a N length vector of aggregate data x, i = 1, . . . , N, suppose the
individual load power data is known for n samples (i ≤ n < N)

The graph signal associated with the individual load power measurements
Xm has two parts corresponding to train and test and is given as
Xm(1 : n) =Xtrain

m and Xm(n+ 1 : N) =Xtest
m . The load signal is

represented as Xm = [Xtrain
m |Xtest

m ].

the load signal in the test phase Xtest
m is estimated by re-formulating the

optimization problem in (1) as:

min
Xtest

m

β
∥∥Xtest −Xtest

m

∥∥2
2
+ αTr(XT

mLmXm) (2)

problem with a closed form solution:

Xtest
m = (βI(n+ 1 : N,n+ 1 : N) + αLm(n+ 1 : N,n+ 1 : N))−1.

(βXtest − αLm(n+ 1 : N, 1 : n)Xtrain
m ) (3)
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Proposed algorithm

Algorithm 1 Electrical Load Disaggregation using GSP

1 Input: aggregate power X, individual loads powers Xm(i) where 1 ≤ i ≤ n,
α = 0.9 and β = 0.1

2 Set m = 1 (Consider one load at a time)

3 While m ≤M do

4 Construct a graph Gm using Wm from using Gaussian kernel based on X

5 Compute Dm and Lm from Wm using definitions.

6 Evaluate Xtest
m using (3)

7 Modify the aggregate by setting X = X − [Xtrain
m |Xtest

m ]

8 Modify the test aggregate by setting Xtest =Xtest −Xtest
m

9 Set m = m+ 1

10 Stop
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Disaggregation Results – REDD 1 Min sampled Data
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Disaggregation Results for Kitchen outlets with 1 minute Data
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Disaggregation Results for all loads with 1 minute Data
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Disaggregation Results – REDD 15Mins sampled Data
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Disaggregation Results for Dryer with 15 minutes Data
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Disaggregation Results for Dryer with 15 minutes Data
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Performance Analysis

Results Summary with 1 minute sampled REDD

Performance Analysis
Load F-score % Acc
Geyser 0.98 98
Kitchen 0.94 94
Refrigerator 0.96 97
Lighting 0.92 96

Results Summary with 15 minutes sampled REDD

Performance Analysis
Load F-score % Acc
Dryer 1 90.5076
Dishwasher 0.888 82.93
Geyser 0.81899 88.056
Lighting 0.9083 79.7326
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Conclusion

Graph signal processing based algorithm.

I Formal Data-driven approach,
I Robust,
I Scalable and flexible,
I Low-complexity, even with a large amount of data

GSP based methods outperform the conventional methods for load
disaggregation

Future direction of electrical load disaggregation is graph is learned based on
total aggregate power measurement.
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